[usaco]4.2.2偶图匹配 The Perfect Stall

简介: <p>The Perfect Stall<br> Hal Burch <br> Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering problems, all the st

The Perfect Stall
Hal Burch
Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering problems, all the stalls in the new barn are different. For the first week, Farmer John randomly assigned cows to stalls, but it quickly became clear that any given cow was only willing to produce milk in certain stalls. For the last week, Farmer John has been collecting data on which cows are willing to produce milk in which stalls. A stall may be only assigned to one cow, and, of course, a cow may be only assigned to one stall.

Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible.

PROGRAM NAME: stall4
INPUT FORMAT
Line 1:  One line with two integers, N (0 <= N <= 200) and M (0 <= M <= 200). N is the number of cows that Farmer John has and M is the number of stalls in the new barn. 
Line 2..N+1:  N lines, each corresponding to a single cow. The first integer (Si) on the line is the number of stalls that the cow is willing to produce milk in (0 <= Si <= M). The subsequent Si integers on that line are the stalls in which that cow is willing to produce milk. The stall numbers will be integers in the range (1..M), and no stall will be listed twice for a given cow. 

SAMPLE INPUT (file stall4.in)
5 5
2 2 5
3 2 3 4
2 1 5
3 1 2 5
1 2

OUTPUT FORMAT
A single line with a single integer, the maximum number of milk-producing stall assignments that can be made.

SAMPLE OUTPUT (file stall4.out)
4

-----------------------------------------------------
典型的偶图匹配问题

初始化是,把无向图转换成有向图,每一条无向边转化成从stall到cow的边。
之后进行匹配
如果cow和一个stall进行了匹配,那么把cow到stall的边转化成从cow到stall的边。

进行匹配的过程如下。
如果一个还没有匹配的cow和一个stall,之间有一条交互路径,那么把这条交互路径上的所有的边进行转向。。
同时加入这个cow和stall。
当搜索不到这样的路径时,搜索结束。

/*
ID:yunleis2
PROG:stall4
LANG:C++
*/

#include<iostream>
#include<fstream>

using namespace std;
const int maxn=201;
const int maxm=201;
int n,m;
int  metri[maxn][maxm];
bool cow[maxn];
int cownext[maxm];
int stallnext[maxn];
bool stall[maxm];
bool cowvisited[maxn];
bool search(int p);
int main()
{
	fstream fin("stall4.in",ios::in );
	fin>>n>>m;
	for(int i=1;i<=n;i++){
		int a,b;
		fin>>a;
		for(int j=0;j<a;j++){
			fin>>b;
			metri[i][b]=1;
		}
	}

	while(true){
		bool flag=false;
		for(int s=1;s<=n;s++)
			cowvisited[s]=false;
		for(int i=1;i<=m;i++){
			if(!stall[i]){
				
				if(search(i))
				{
					flag=true;
					stall[i]=true;
					//--i;continue;
				}
				 
			}
		}
		if(!flag)
			break;		 
	}
	int result=0;
#if 0
	for(int i=1;i<=n;i++){
		for(int j=1;j<=m;j++){
			cout<<metri[i][j]<<" ";
		}
		cout<<endl;
	}
#endif
	for(int i=1;i<=n;i++){
		if(cow[i])
			result++;
	}
	fstream fout("stall4.out",ios::out);
	fout<<result<<endl;
	//system("pause");
}
bool search(int p){
	//stall p;
	for(int i=1;i<=n;i++){
		if(cowvisited[i])
			continue;
		if(metri[i][p]==1){
			
			if(!cow[i]){
				cow[i]=true;
				cownext[i]=p;
				metri[i][p]=2;
				cowvisited[i]=true;
				return true;
			}
			else if(metri[i][cownext[i]]==2){
				cowvisited[i]=true;
				bool flag=search(cownext[i]);
				if(flag){
					metri[i][p]=2;
					metri[i][cownext[i]]=1;
					cownext[i]=p;
					return flag;
				}
			}
		}
	}
	return false;
}


 

 

 

目录
打赏
0
0
0
0
3124
分享
相关文章
正向最大匹配(Forward Maximum Matching)
正向最大匹配(Forward Maximum Matching)是一种查找文本字符串中词语的算法。
521 1
Brute-Force模式匹配算法
Brute-Force匹配算法,翻译过来可以叫暴力匹配算法,典型应用场景就是字符串的匹配问题,比如寻找一个子串在主串中第一次出现的下标。这种匹配算法的逻辑是这样的:选取主串中指定位置作为匹配的起点(这篇文章使用的是首位作为起点),将子串起点与该起点对比,比对成功后起点后移一位,子串的起点同样后移一位继续比较,直到将子串与主串中全部匹配;若是中途出现比对失败的情况,则将主串从原起点的下一位开始继续这种比较。下面就根据BF算法使用while循环和for循环来分别实现字符串的匹配问题。
320 0
LeetCode 44. Wildcard Matching
给定输入字符串s和模式串(p),实现通配符模式匹配支持'?' 和'*'.
97 0
UPC-Match Matching(完全背包dp+字符串)
UPC-Match Matching(完全背包dp+字符串)
90 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等