HDOJ 1334 Perfect Cubes(暴力)

简介: HDOJ 1334 Perfect Cubes(暴力)

Problem Description

For hundreds of years Fermat’s Last Theorem, which stated simply that for n > 2 there exist no integers a, b, c > 1 such that a^n = b^n + c^n, has remained elusively unproven. (A recent proof is believed to be correct, though it is still undergoing scrutiny.) It is possible, however, to find integers greater than 1 that satisfy the “perfect cube” equation a^3 = b^3 + c^3 + d^3 (e.g. a quick calculation will show that the equation 12^3 = 6^3 + 8^3 + 10^3 is indeed true). This problem requires that you write a program to find all sets of numbers {a, b, c, d} which satisfy this equation for a <= 200.


Output

The output should be listed as shown below, one perfect cube per line, in non-decreasing order of a (i.e. the lines should be sorted by their a values). The values of b, c, and d should also be listed in non-decreasing order on the line itself. There do exist several values of a which can be produced from multiple distinct sets of b, c, and d triples. In these cases, the triples with the smaller b values should be listed first.


The first part of the output is shown here:


Cube = 6, Triple = (3,4,5)

Cube = 12, Triple = (6,8,10)

Cube = 18, Triple = (2,12,16)

Cube = 18, Triple = (9,12,15)

Cube = 19, Triple = (3,10,18)

Cube = 20, Triple = (7,14,17)

Cube = 24, Triple = (12,16,20)


Note: The programmer will need to be concerned with an efficient implementation. The official time limit for this problem is 2 minutes, and it is indeed possible to write a solution to this problem which executes in under 2 minutes on a 33 MHz 80386 machine. Due to the distributed nature of the contest in this region, judges have been instructed to make the official time limit at their site the greater of 2 minutes or twice the time taken by the judge’s solution on the machine being used to judge this problem.


题意:n在[2,200]的范围,都是整数

找出所有的n*n*n=a*a*a+b*b*b+c*c*c;

(<2a<=b<=c<200)

直接暴力做!

注意的只有格式:=号两边都有空格,第一个逗号后面有一个空格。

public class Main{
    public static void main(String[] args) {
        for(int m=6;m<=200;m++){
            int mt = m*m*m;
            int at;
            int bt;
            int ct;
            for(int a=2;a<m;a++){
                at=a*a*a;
                for(int b=a;b<m;b++){
                    bt = b*b*b;
                    //适当的防范一下,提高效率
                    if(at+bt>mt){
                        break;
                    }
                    for(int c=b;c<m;c++){
                        ct=c*c*c;
                        //适当的防范一下,提高效率
                        if(at+bt+ct>mt){
                            break;
                        }
                        if(mt==(at+bt+ct)){
                            System.out.println("Cube = "+m+", Triple = ("+a+","+b+","+c+")");
                        }
                    }
                }
            }
        }
    }
}
目录
相关文章
hdoj 1078 FatMouse and Cheese(记忆化搜索)
简单的记忆化搜索,和其他不一样的地方就是这个一次可以走K步,其他没啥!!
60 0
|
算法
hdoj 4712 Hamming Distance(靠人品过的)
在信息论中,两个等长字符串之间的汉明距离是两个字符串对应位置的字符不同的个数。换句话说,它就是将 一个字符串变换成另外一个字符串所需要替换的字符个数。
41 0
AtCoder Beginner Contest 216 G - 01Sequence (并查集 贪心 树状数组 差分约束)
AtCoder Beginner Contest 216 G - 01Sequence (并查集 贪心 树状数组 差分约束)
164 0
|
人工智能 BI
[Atcoder ARC124] XOR Matching 2-小思维 | 暴力
题意: 给出n,两个数列a[1] -> a[n],b[1] -> b[n] 问有多少个x,可以使得在我们任意一种方式排列b[]之后,有a[i] ^ b[i] == x (1 <= i <= n) 思路: 首先我们可以确定所有的答案一定在a[1] ^ b[i] (1 <= i <= n)之内,所以我们只需要将这些个x的解空间单独放到数组c[]里,然后遍历x的解空间c[],将c[i] ^ a[i]的结果记录在d[]里面,然后判断b[],d[]是否完全相同即可,如果完全相同,就可以记录答案,注意最终答案要进行去重
125 0
[Atcoder ARC124] XOR Matching 2-小思维 | 暴力
|
C语言
HDOJ/HDU Tempter of the Bone(深搜+奇偶性剪枝)
HDOJ/HDU Tempter of the Bone(深搜+奇偶性剪枝)
104 0
|
Java
HDOJ1518Square 深搜
HDOJ1518Square 深搜
111 0
HDOJ 2012 素数判定
HDOJ 2012 素数判定
130 0
HDOJ 1339 A Simple Task(简单数学题,暴力)
HDOJ 1339 A Simple Task(简单数学题,暴力)
126 0
HDOJ1002题A + B Problem II,2个大数相加
HDOJ1002题A + B Problem II,2个大数相加
126 0
|
机器学习/深度学习 BI 人工智能