mysql 分区类型详解

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介:

RANGE分区

基于属于一个给定连续区间的列值,把多行分配给分区。
这些区间要连续且不能相互重叠,使用VALUES LESS THAN操作符来进行定义。以下是实例。
CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT ‘1970-01-01′,
separated DATE NOT NULL DEFAULT ‘9999-12-31′,
job_code INT NOT NULL,
store_id INT NOT NULL
)
partition BY RANGE (store_id) (
partition p0 VALUES LESS THAN (6),
partition p1 VALUES LESS THAN (11),
partition p2 VALUES LESS THAN (16),
partition p3 VALUES LESS THAN (21)
);
按照这种分区方案,在商店1到5工作的雇员相对应的所有行被保存在分区P0中,商店6到10的雇员保存在P1中,依次类推。注意,每个分区都是按顺序进行定义,从最低到最高。这是PARTITION BY RANGE 语法的要求;在这点上,它类似于C或Java中的“switch … case”语句。
对于包含数据(72, ‘Michael’, ‘Widenius’, ‘1998-06-25′, NULL, 13)的一个新行,可以很容易地确定它将插入到p2分区中,但是如果增加了一个编号为第21的商店,将会发生什么呢?在这种方案下,由于没有规则把store_id大于20的商店包含在内,服务器将不知道把该行保存在何处,将会导致错误。 要避免这种错误,可以通过在CREATE TABLE语句中使用一个“catchall” VALUES LESS THAN子句,该子句提供给所有大于明确指定的最高值的值:
CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT ‘1970-01-01′,
separated DATE NOT NULL DEFAULT ‘9999-12-31′,
job_code INT NOT NULL,
store_id INT NOT NULL
)
PARTITION BY RANGE (store_id) (
PARTITION p0 VALUES LESS THAN (6),
PARTITION p1 VALUES LESS THAN (11),
PARTITION p2 VALUES LESS THAN (16),
PARTITION p3 VALUES LESS THAN MAXVALUE
);
MAXVALUE 表示最大的可能的整数值。现在,store_id 列值大于或等于16(定义了的最高值)的所有行都将保存在分区p3中。在将来的某个时候,当商店数已经增长到25, 30, 或更多 ,可以使用ALTER TABLE语句为商店21-25, 26-30,等等增加新的分区。
在几乎一样的结构中,你还可以基于雇员的工作代码来分割表,也就是说,基于job_code 列值的连续区间。例如——假定2位数字的工作代码用来表示普通(店内的)工人,三个数字代码表示办公室和支持人员,四个数字代码表示管理层,你可以使用下面的语句创建该分区表:
CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT ‘1970-01-01′,
separated DATE NOT NULL DEFAULT ‘9999-12-31′,
job_code INT NOT NULL,
store_id INT NOT NULL
)
PARTITION BY RANGE (job_code) (
PARTITION p0 VALUES LESS THAN (100),
PARTITION p1 VALUES LESS THAN (1000),
PARTITION p2 VALUES LESS THAN (10000)
);
在这个例子中, 店内工人相关的所有行将保存在分区p0中,办公室和支持人员相关的所有行保存在分区p1中,管理层相关的所有行保存在分区p2中。
在VALUES LESS THAN 子句中使用一个表达式也是可能的。这里最值得注意的限制是MySQL 必须能够计算表达式的返回值作为LESS THAN (<)比较的一部分;因此,表达式的值不能为NULL 。由于这个原因,雇员表的hired, separated, job_code,和store_id列已经被定义为非空(NOT NULL)。
除了可以根据商店编号分割表数据外,你还可以使用一个基于两个DATE (日期)中的一个的表达式来分割表数据。例如,假定你想基于每个雇员离开公司的年份来分割表,也就是说,YEAR(separated)的值。实现这种分区模式的CREATE TABLE 语句的一个例子如下所示:
CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT ‘1970-01-01′,
separated DATE NOT NULL DEFAULT ‘9999-12-31′,
job_code INT,
store_id INT
)
PARTITION BY RANGE (YEAR(separated)) (
PARTITION p0 VALUES LESS THAN (1991),
PARTITION p1 VALUES LESS THAN (1996),
PARTITION p2 VALUES LESS THAN (2001),
PARTITION p3 VALUES LESS THAN MAXVALUE
);
在这个方案中,在1991年前雇佣的所有雇员的记录保存在分区p0中,1991年到1995年期间雇佣的所有雇员的记录保存在分区p1中, 1996年到2000年期间雇佣的所有雇员的记录保存在分区p2中,2000年后雇佣的所有工人的信息保存在p3中。
RANGE分区在如下场合特别有用:
1)、 当需要删除一个分区上的“旧的”数据时,只删除分区即可。如果你使用上面最近的那个例子给出的分区方案,你只需简单地使用 “ALTER TABLE employees DROP PARTITION p0;”便可删除所有在1991年前就已经停止工作的雇员相对应的所有行。对于有大量行的表,这比运行一个如“DELETE FROM employees WHERE YEAR (separated) <= 1990;”这样的一个DELETE查询要有效得多。
2)、想要使用一个包含有日期或时间值,或包含有从一些其他级数开始增长的值的列。
3)、经常运行直接依赖于用于分割表的列的查询。例如,当执行一个如“SELECT COUNT(*) FROM employees WHERE YEAR(separated) = 2000 GROUP BY store_id;”这样的查询时,MySQL可以很迅速地确定只有分区p2需要扫描,这是因为余下的分区不可能包含有符合该WHERE子句的任何记录。

注意:这种优化还没有在MySQL 5.1源程序中启用

LIST分区
类似于按RANGE分区,区别在于LIST分区是基于列值匹配一个离散值集合中的某个值来进行选择。
LIST分区通过使用“PARTITION BY LIST(expr)”来实现,其中“expr” 是某列值或一个基于某个列值、并返回一个整数值的表达式,然后通过“VALUES IN (value_list)”的方式来定义每个分区,其中“value_list”是一个通过逗号分隔的整数列表。
注释:在MySQL 5.1中,当使用LIST分区时,有可能只能匹配整数列表。
CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT ‘1970-01-01′,
separated DATE NOT NULL DEFAULT ‘9999-12-31′,
job_code INT,
store_id INT
);
假定有20个音像店,分布在4个有经销权的地区,如下表所示:
====================
地区 商店ID 号
————————————
北区 3, 5, 6, 9, 17
东区 1, 2, 10, 11, 19, 20
西区 4, 12, 13, 14, 18
中心区 7, 8, 15, 16
====================
要按照属于同一个地区商店的行保存在同一个分区中的方式来分割表,可以使用下面的“CREATE TABLE”语句:
CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT ‘1970-01-01′,
separated DATE NOT NULL DEFAULT ‘9999-12-31′,
job_code INT,
store_id INT
)
PARTITION BY LIST(store_id)
PARTITION pNorth VALUES IN (3,5,6,9,17),
PARTITION pEast VALUES IN (1,2,10,11,19,20),
PARTITION pWest VALUES IN (4,12,13,14,18),
PARTITION pCentral VALUES IN (7,8,15,16)
);

这使得在表中增加或删除指定地区的雇员记录变得容易起来。例如,假定西区的所有音像店都卖给了其他公司。那么与在西区音像店工作雇员相关的所有记录(行)可以使用“ALTER TABLE employees DROP PARTITION pWest;”来进行删除,它与具有同样作用的DELETE (删除)查询“DELETE query DELETE FROM employees WHERE store_id IN (4,12,13,14,18);”比起来,要有效得多。
【要点】如果试图插入列值(或分区表达式的返回值)不在分区值列表中的一行时,那么“INSERT”查询将失败并报错。例如,假定LIST分区的采用上面的方案,下面的查询将失败:
INSERT INTO employees VALUES(224, ‘Linus’, ‘Torvalds’, ‘2002-05-01′, ‘2004-10-12′, 42, 21);
这是因为“store_id”列值21不能在用于定义分区pNorth, pEast, pWest,或pCentral的值列表中找到。要重点注意的是,LIST分区没有类似如“VALUES LESS THAN MAXVALUE”这样的包含其他值在内的定义。将要匹配的任何值都必须在值列表中找到。

LIST分区除了能和RANGE分区结合起来生成一个复合的子分区,与HASH和KEY分区结合起来生成复合的子分区也是可能的。

HASH分区
基于用户定义的表达式的返回值来进行选择的分区,该表达式使用将要插入到表中的这些行的列值进行计算。这个函数可以包含MySQL 中有效的、产生非负整数值的任何表达式。
要使用HASH分区来分割一个表,要在CREATE TABLE 语句上添加一个“PARTITION BY HASH (expr)”子句,其中“expr”是一个返回一个整数的表达式。它可以仅仅是字段类型为MySQL 整型的一列的名字。此外,你很可能需要在后面再添加一个“PARTITIONS num”子句,其中num 是一个非负的整数,它表示表将要被分割成分区的数量。
CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT ‘1970-01-01′,
separated DATE NOT NULL DEFAULT ‘9999-12-31′,
job_code INT,
store_id INT
)
PARTITION BY HASH(store_id)
PARTITIONS 4;
如果没有包括一个PARTITIONS子句,那么分区的数量将默认为1。 例外: 对于NDB Cluster(簇)表,默认的分区数量将与簇数据节点的数量相同,
这种修正可能是考虑任何MAX_ROWS 设置,以便确保所有的行都能合适地插入到分区中。
LINER HASH
MySQL还支持线性哈希功能,它与常规哈希的区别在于,线性哈希功能使用的一个线性的2的幂(powers-of-two)运算法则,而常规 哈希使用的是求哈希函数值的模数。
线性哈希分区和常规哈希分区在语法上的唯一区别在于,在“PARTITION BY” 子句中添加“LINEAR”关键字。
CREATE TABLE employees (
id INT NOT NULL,
fname VARCHAR(30),
lname VARCHAR(30),
hired DATE NOT NULL DEFAULT ‘1970-01-01′,
separated DATE NOT NULL DEFAULT ‘9999-12-31′,
job_code INT,
store_id INT
)
PARTITION BY LINEAR HASH(YEAR(hired))
PARTITIONS 4;
下面的内容是详细的算法,可以只做了解
=======================================
假设一个表达式expr, 当使用线性哈希功能时,记录将要保存到的分区是num 个分区中的分区N,其中N是根据下面的算法得到:
1. 找到下一个大于num的2的幂,我们把这个值称为V ,它可以通过下面的公式得到:
2. V = POWER(2, CEILING(LOG(2, num)))
(例如,假定num是13。那么LOG(2,13)就是3.7004397181411。 CEILING(3.7004397181411)就是4,则V = POWER(2,4), 即等于16)。
3. 设置 N = F(column_list) & (V – 1).
4. 当 N >= num:
设置 V = CEIL(V / 2)
设置 N = N & (V – 1)
例如,假设表t1,使用线性哈希分区且有4个分区,是通过下面的语句创建的:
CREATE TABLE t1 (col1 INT, col2 CHAR(5), col3 DATE)
PARTITION BY LINEAR HASH( YEAR(col3) )
PARTITIONS 6;
现在假设要插入两行记录到表t1中,其中一条记录col3列值为’2003-04-14’,另一条记录col3列值为’1998-10-19’。第一条记录将要保存到的分区确定如下:
V = POWER(2, CEILING(LOG(2,7))) = 8
N = YEAR(‘2003-04-14′) & (8 – 1)
= 2003 & 7
= 3
(3 >= 6 为假(FALSE): 记录将被保存到#3号分区中)
第二条记录将要保存到的分区序号计算如下:
V = 8
N = YEAR(‘1998-10-19′) & (8-1)
= 1998 & 7
= 6
(6 >= 4 为真(TRUE): 还需要附加的步骤)
N = 6 & CEILING(5 / 2)
= 6 & 3
= 2
(2 >= 4 为假(FALSE): 记录将被保存到#2分区中)
按照线性哈希分区的优点在于增加、删除、合并和拆分分区将变得更加快捷,有利于处理含有极其大量(1000吉)数据的表。它的缺点在于,与使用
常规HASH分区得到的数据分布相比,各个分区间数据的分布不大可能均衡。

KEY分区
类似于按HASH分区,区别在于KEY分区只支持计算一列或多列,且MySQL 服务器提供其自身的哈希函数。必须有一列或多列包含整数值。
CREATE TABLE tk (
col1 INT NOT NULL,
col2 CHAR(5),
col3 DATE
)
PARTITION BY LINEAR KEY (col1)
PARTITIONS 3;

在KEY分区中使用关键字LINEAR和在HASH分区中使用具有同样的作用,分区的编号是通过2的幂(powers-of-two)算法得到,而不是通过模数算法。
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
1月前
|
分布式计算 关系型数据库 MySQL
SpringBoot项目中mysql字段映射使用JSONObject和JSONArray类型
SpringBoot项目中mysql字段映射使用JSONObject和JSONArray类型 图像处理 光通信 分布式计算 算法语言 信息技术 计算机应用
47 8
|
1月前
|
SQL 监控 关系型数据库
MySQL如何查看每个分区的数据量
通过本文的介绍,您可以使用MySQL的 `INFORMATION_SCHEMA`查询每个分区的数据量。了解分区数据量对数据库优化和管理具有重要意义,可以帮助您优化查询性能、平衡数据负载和监控数据库健康状况。希望本文对您在MySQL分区管理和性能优化方面有所帮助。
97 1
|
2月前
|
关系型数据库 MySQL
用dbeaver创建一个enum类型,并讲述一部分,mysql的enum类型的知识
这篇文章介绍了如何在DBeaver中创建MySQL表的枚举(ENUM)字段,并探讨了MySQL中ENUM类型的一些行为特点,例如ENUM值的默认排序和在插入重复值时的表现。
56 1
用dbeaver创建一个enum类型,并讲述一部分,mysql的enum类型的知识
|
2月前
|
存储 关系型数据库 MySQL
MySQL 如何查看每个分区的数据量
MySQL 如何查看每个分区的数据量
53 3
|
1月前
|
关系型数据库 MySQL Java
SpringBoot项目中mysql字段映射使用JSONObject和JSONArray类型
SpringBoot项目中mysql字段映射使用JSONObject和JSONArray类型
31 0
|
3月前
|
关系型数据库 MySQL 数据库
Python MySQL查询返回字典类型数据的方法
通过使用 `mysql-connector-python`库并选择 `MySQLCursorDict`作为游标类型,您可以轻松地将MySQL查询结果以字典类型返回。这种方式提高了代码的可读性,使得数据操作更加直观和方便。上述步骤和示例代码展示了如何实现这一功能,希望对您的项目开发有所帮助。
151 4
|
3月前
|
自然语言处理 算法 Java
Java如何判断两句话的相似度类型MySQL的match
【9月更文挑战第1天】Java如何判断两句话的相似度类型MySQL的match
27 2
|
4月前
|
存储 关系型数据库 MySQL
MySQL bit类型增加索引后查询结果不正确案例浅析
【8月更文挑战第17天】在MySQL中,`BIT`类型字段在添加索引后可能出现查询结果异常。表现为查询结果与预期不符,如返回错误记录或遗漏部分数据。原因包括索引使用不当、数据存储及比较问题,以及索引创建时未充分考虑`BIT`特性。解决方法涉及正确运用索引、理解`BIT`的存储和比较机制,以及合理创建索引以覆盖各种查询条件。通过`EXPLAIN`分析执行计划可帮助诊断和优化查询。
|
4月前
|
缓存 NoSQL Redis
一天五道Java面试题----第九天(简述MySQL中索引类型对数据库的性能的影响--------->缓存雪崩、缓存穿透、缓存击穿)
这篇文章是关于Java面试中可能会遇到的五个问题,包括MySQL索引类型及其对数据库性能的影响、Redis的RDB和AOF持久化机制、Redis的过期键删除策略、Redis的单线程模型为何高效,以及缓存雪崩、缓存穿透和缓存击穿的概念及其解决方案。
|
4月前
|
关系型数据库 MySQL 数据管理
深入解析 MySQL 中的关系类型
【8月更文挑战第31天】
72 0