一天五道Java面试题----第九天(简述MySQL中索引类型对数据库的性能的影响--------->缓存雪崩、缓存穿透、缓存击穿)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 这篇文章是关于Java面试中可能会遇到的五个问题,包括MySQL索引类型及其对数据库性能的影响、Redis的RDB和AOF持久化机制、Redis的过期键删除策略、Redis的单线程模型为何高效,以及缓存雪崩、缓存穿透和缓存击穿的概念及其解决方案。

这里是参考B站上的大佬做的面试题笔记。大家也可以去看视频讲解!!!

文章目录

  • 1、简述MySQL中索引类型对数据库的性能的影响
  • 2、RDB和AOF机制
  • 3、Redis的过期键的删除策略
  • 4、Redis线程模型,单线程为什么这么快
  • 5、缓存雪崩、缓存穿透、缓存击穿

1、简述MySQL中索引类型对数据库的性能的影响

  • 普通索引:允许被索引的数据列包含重复的数据

  • 唯一索引:可以保证数据记录的唯一性

  • 主键:是一种特殊的唯一索引,在一张表中只能定义一个主键索引,主键用于唯一标识一条记录,使用关键字primary key来创建。

  • 联合索引:索引可以覆盖多个数据列,如像INDEX(columnA,columnB)索引。

  • 全文索引:通过建立倒排索引,可以极大的提升检索效率,解决判断字段是否包含的问题,是目前搜索引擎使用的一种关键技术。可以通过ALTER TABLE table_name ADD FULLTEXT(column);创建全文索引

优点:

  • 索引可以极大的提高数据的查询速度。

  • 通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。

缺点:

  • 但是会减低插入、删除、更新表的速度,因为在执行这些写操作时,还要操作索引文件
  • 索引需要占用物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大,如果非聚簇索引很多,一旦聚簇索引改变,那么所有非聚集索引都会跟着变。

2、RDB和AOF机制

RDB:Redis DataBase

在指定的时间间隔内将内存中的数据集快照写入磁盘,实际操作过程就是fork一个子进程,先将数据集写入临时文件,写入成功后,再替换之前的文件,用二进制压缩存储。

优点:

  • 1、整个Redis数据库只包含一个文件dump.rdb,方便持久化
  • 2、容灾性好,方便备份
  • 3、性能最大化,fork子进程来完成写操作,让主进程继续处理命令,所以是IO最大化。使用单独子进程来进行持久化,主进程不会进行任何IO操作,保证了redis的高性能。
  • 4、相对于数据集大时,比AOF的启动效率更高

缺点:

  • 1、数据安全性低。RDB是间隔一段时间进行持久化,如果持久化之间redis发生故障,会发生数据丢失。所以这种方式更适合数据要求不严谨的时候)
  • 2、由于RDB是通过fork子进程来协助完成数据持久化工作的,因此,如果当数据集较大时,可能会导致整个服务器停止服务几百毫秒,甚至是一秒钟。

AOF:Append Only File

以日志的形式记录服务器所处理的每一个写、删除操作,查询操作不会记录,以文本的方式记录,可以打开文件看到详细的操作记录。

优点

  • 1、数据安全,Redis中提供了3中同步策略,即每秒同步、每修改同步和不同步。事实上,每秒同步也是异步完成的,其效率也是非常高的,所差的是一旦系统发生宕机现象,那么这一秒钟之内修改的数据将会丢失。而每修改同步,我们可以将其视为同步持久化,即每次发生的数据变化都会被立刻记录到磁盘中。
  • 2、通过append模式写文件,即使中途服务器宕机也不会破坏已经存在的内容,可以通过redis-check-aof工具解决数据一致性问题。
  • AOF机制的rewrite模式。定期对AOF文件进行重写,以达到压缩的目的。

缺点

  • 1、AOF文件比RDB文件大,且恢复速度慢
  • 2、数据集大的时候,比rdb启动效率低
  • 3、运行效率没有RDB高

AOF文件比RDB更新频率高,优先使用AOF还原数据
AOF比RDB更安全也更大
RDB性能比AOF好
如果两个都配置了优先加载AOF

3、Redis的过期键的删除策略

Redis是key-value数据库,我们可以设置Redis中缓存的过期时间。Redis的过期策略就是指当Redis中缓存的key过期了,Redis如何处理。

  • 惰性过期:只有当访问一个key时,才会判断该key是否已过期,过期则清除。该策略可以最大化地节省CPU资源,却对内存非常不友好。极端情况肯可能出现大量的过期key没有被访问,从而不会被清除,占用大量内存
  • 定期过期:每隔一定的时间,会扫描一定数量的数据库的expires字典中一定数量的key,并清除其中已过期的key。该策略是前者的一个折中方案。通过调整定时扫描的时间间隔和每次扫描的限定耗时,可以在不同情况下使得CPU和内存资源达到最优的平衡效果。

(expires字典会保存所有设置了过期时间的key的过期时间数据,其中,key是指向键空间中的某个键的指针,value是改键的毫秒精度的UNIX时间戳表示过期的时间。键空间是指该Redis集群中保存的所有的键。)

Redis中同时使用了惰性过期和定期过期两种过期策略。

4、Redis线程模型,单线程为什么这么快

Redis基于Reactor模式开发了网路事件处理器,这个处理器叫做文件事件处理器 file event handler。这个文件事件处理器,它是单线程的,所以Redis才叫做单线程的模型,它采用IO多路复用机制来同时监听多个Socket,根据Socket上的事件类型来选择对应的事件处理器来处理这个事件。可以实现高性能网络通信模型,又可以跟内部其他单线程的模块进行对接,保证了Redis内部的线程模型的简单性。

文件事件处理器的结构包含4个部分:多个Socket、IO多路复用程序、文件事件分配器以及事件处理器(命令请求处理器、命令回复处理器、连接应答处理器等)。
多个Socket可能并发的产生不同的操作,每个操作对应不同的文件事件,但是IO多路复用程序会监听多个Socket,会将Socket放入一个队列中排队,每次从队列中取出一个Socket给事件分派器,事件分派器把Socket给对应的事件处理器。
然后一个Socket的事件处理完之后,IO多路复用程序会将队列中的下一个Socket给事件分派器。文件事件分派器会根据每个Socket当前产生的事件,来选择对应的事件处理器来处理。

单线程快的原因:

  • 1、纯内存操作
  • 2、核心是基于非阻塞的IO多路复用机制
  • 3、单线程反而避免了多线程的频繁上下文切换带来的性能问题

5、缓存雪崩、缓存穿透、缓存击穿

缓存雪崩、缓存穿透、缓存击穿

缓存雪崩是指缓存同一时间大面积的失效,所以,后面的请求都会落到数据库上,造成数据库短时间内承受大量请求而崩掉。

解决方案:

  • 1、缓存数据的过期时间设置随机,防止同一时间大量数据过期现象发生。
  • 2、给每一个缓存数据增加相应的缓存标记,记录缓存是否失效,如果缓存标记失效,则更新数据缓存
  • 3、缓存预热
  • 4、互斥锁

缓存穿透是指缓存和数据库中都没有的数据,会导致所有的请求都落到数据库上,造成数据库短时间内承受大量请求而崩掉。
解决方法:

  • 1、接口层增加校验,如用户鉴权校验,id做基础校验,id<=0的直接拦截;
  • 2、从缓存取不到数据,在数据库中也没有取到,这时也可以将key-value对写为key-null,缓存有效时间可以设置短点,如30秒(设置太长会导致正常情况也没法使用)。这样就可以防止攻击用户反复用同一个id暴力攻击
  • 3、采用布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被这个bitmap拦截掉,从而避免了对底层存储系统的查询压力

缓存击穿是指缓存中没有但数据库中有的数据(一般是缓存时间到期),这时由于并发用户特别多,同时读缓存没读到数据,又同时去数据库去取数据,引起数据库压力瞬间增大,造成过大压力。和缓存雪崩不同的是,缓存击穿指并发查同一条数据,缓存雪崩式不同数据都过期了,很多数据都查不到从而查数据库。

解决方法:

  • 设置热点数据永远不过期
  • 加互斥锁
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
6天前
|
XML Java 数据库连接
性能提升秘籍:如何高效使用Java连接池管理数据库连接
在Java应用中,数据库连接管理至关重要。随着访问量增加,频繁创建和关闭连接会影响性能。为此,Java连接池技术应运而生,如HikariCP。本文通过代码示例介绍如何引入HikariCP依赖、配置连接池参数及使用连接池高效管理数据库连接,提升系统性能。
28 5
|
16天前
|
缓存 监控 测试技术
如何利用浏览器的缓存来优化网站性能?
【10月更文挑战第23天】通过以上多种方法合理利用浏览器缓存,可以显著提高网站的性能,减少网络请求,加快资源加载速度,提升用户的访问体验。同时,要根据网站的具体情况和资源的特点,不断优化和调整缓存策略,以适应不断变化的业务需求和用户访问模式。
59 7
|
17天前
|
缓存 NoSQL 关系型数据库
mysql和缓存一致性问题
本文介绍了五种常见的MySQL与Redis数据同步方法:1. 双写一致性,2. 延迟双删策略,3. 订阅发布模式(使用消息队列),4. 基于事件的缓存更新,5. 缓存预热。每种方法的实现步骤、优缺点均有详细说明。
|
15天前
|
缓存 监控 关系型数据库
如何根据监控结果调整 MySQL 数据库的参数以提高性能?
【10月更文挑战第28天】根据MySQL数据库的监控结果来调整参数以提高性能,需要综合考虑多个方面的因素
54 1
|
15天前
|
监控 关系型数据库 MySQL
如何监控和诊断 MySQL 数据库的性能问题?
【10月更文挑战第28天】监控和诊断MySQL数据库的性能问题是确保数据库高效稳定运行的关键
35 1
|
15天前
|
缓存 关系型数据库 MySQL
如何优化 MySQL 数据库的性能?
【10月更文挑战第28天】
38 1
|
18天前
|
SQL Java 数据库连接
在Java应用中,数据库访问常成为性能瓶颈。连接池技术通过预建立并复用数据库连接,有效减少连接开销,提升访问效率
在Java应用中,数据库访问常成为性能瓶颈。连接池技术通过预建立并复用数据库连接,有效减少连接开销,提升访问效率。本文介绍了连接池的工作原理、优势及实现方法,并提供了HikariCP的示例代码。
32 3
|
17天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
84 1
|
18天前
|
存储 Java 关系型数据库
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践
在Java开发中,数据库连接是应用与数据交互的关键环节。本文通过案例分析,深入探讨Java连接池的原理与最佳实践,包括连接创建、分配、复用和释放等操作,并通过电商应用实例展示了如何选择合适的连接池库(如HikariCP)和配置参数,实现高效、稳定的数据库连接管理。
34 2
|
18天前
|
Java 数据库连接 数据库
深入探讨Java连接池技术如何通过复用数据库连接、减少连接建立和断开的开销,从而显著提升系统性能
在Java应用开发中,数据库操作常成为性能瓶颈。本文通过问题解答形式,深入探讨Java连接池技术如何通过复用数据库连接、减少连接建立和断开的开销,从而显著提升系统性能。文章介绍了连接池的优势、选择和使用方法,以及优化配置的技巧。
16 1