XMOVE3.0手持终端——软件介绍(四):在2KB内存的单片机上实现的超精简五子棋对战算法(原创)

简介:

一. 综述

  这是我两年前完成的一个小项目,它基于我开发的XMOVE动作感应系统平台。五子棋算法网上随便一搜到处都是,不过值得自豪的是,我在2KB内存的单片机上不仅跑上了我自制的嵌入式OS,还能同时跑五子棋。这是界面截图:

  

 以下是它的功能和特性:

  • 内存占用极低,约600byte
  • 执行一次迭代过程,算法在初级水平(同学,这是单片机,不是电脑!)
  • 在8MHz的MSP430上算法执行时间不超过0.3s
  • 支持人机对战,双人对战和无线对战(通过NRF24L01实现)
  • 代码精简
  • 嵌入式彩屏GUI实现
  • 支持陀螺仪体感旋转放置棋子

  

    与XMOVE手持终端相关的介绍文章列表如下:

  硬件综述: 自制的彩屏手持动作感应终端

  软件综述:手持终端功能介绍

  软件介绍(一):精简型嵌入式系统的菜单实现和任务切换  

  软件介绍(二):在2KB内存单片机上实现的彩屏GUI控件库

  软件介绍(三):在2KB内存单片机上实现的俄罗斯方块

  软件介绍(四):在2KB内存单片机上实现的超精简五子棋算法

  软件介绍(五):在2KB内存的单片机上实现的T9中文输入法

  下面我将简要的介绍系统实现过程,同时附上源代码。不过因为我系统对低内存平台做了特别的优化,如果你要纯粹往PC上移植的话,可能还不如去PUDN上面下代码来得快。当然参考一下设计思路也是有价值的。

二. 分析和数据结构定义

  我们要重点分析以下几个问题:

  1. 如何精简内存占用

  为了简化代码,我做了如下的定义:

  #define unsigned char u8 //8bit

      #define unsigned intu16 //16bit

  对于2KB内存的单片机,已经有将近1KB用于系统本身,可供使用的应用内存不超过1KB。如果不做优化,内存必然不够用。可以简单做个计算,五子棋盘大小15*15,每格存在三种情况,黑子,白子,无子,若用byte型存储,就需要225byte,若加上中间迭代过程是完全不够的。

  因此我做了如下简化:每个子只占用两个bit,因此总共225个点,采用16bit的unsigned int存储,仅仅需要29大小的数组

  

  做了这样的简化,必须提供读取或写入某点是何情况的接口函数:

  PS:大三写的C代码,有点丑陋,大家随便看看吧

复制代码
//x,y是横纵坐标,Data是数组
//返回0:无子,1 :黑子,2:白子
u8 ReadData(u8 x,u8 y,u16  Data[29])
{
    u8 t=y+x*15;
    u16 temp=0x03;
    temp=temp<<2*(t%8);
    return ((Data[t/8]&temp)>>(2*(t%8)));
}

//x,y是横纵坐标,Data是数组
// dat 0:无子,1 :黑子,2:白子
void WriteData(u8 x,u8 y,u16 Data[29],u8 dat)
{
    u8 t=y+x*15;
    u16 Dat=dat;
    u16 temp=0x03;
    temp=temp<<2*(t%8);
    temp=0xffff-temp;
    Dat=Dat<<2*(t%8);
    Data[t/8]=(Data[t/8]&temp)|Dat;
}
复制代码

  2. 判断胜负

  系统在任意一方下棋之后,需要检测该方是否获胜,很简单,我们检测横竖,左斜和右斜四种情况是否满足五子连珠即可:

  

复制代码
u8 ResultCheck(u16  Data[29],u8 color)  //成功测试 返回值:0:不成功,1 白方, 2黑方
{
    int x, y;
    // 判断横向
    for ( y = 0; y < 15; y++ )
    {
        for ( x = 0; x < 11; x++ )
        {
            if ( color ==ReadData(x,y,Data)  &&
                color == ReadData(x+1,y,Data) &&
                color == ReadData(x+2,y,Data)  &&
                color == ReadData(x+3,y,Data)  &&
                color == ReadData(x+4,y,Data)  )
                
                return color;
            
        }
    }
    // 判断纵向
    for ( y = 0; y < 11; y++ )
    {
        for ( x = 0; x < 15; x++ )
        {
            if ( color ==ReadData(x,y,Data) &&
                color ==ReadData(x,y+1,Data) &&
                color == ReadData(x,y+2,Data) &&
                color ==ReadData(x,y+3,Data) &&
                color == ReadData(x,y+4,Data) )
                
                return color;
            
        }
    }
    // 判断"\"方向
    for ( y = 0; y < 11; y++ )
    {
        for ( x = 0; x < 11; x++ )
        {
            if ( color == ReadData(x,y,Data)&&
                color == ReadData(x+1,y+1,Data) &&
                color ==ReadData(x+2,y+2,Data)&&
                color ==ReadData(x+3,y+3,Data)&&
                color == ReadData(x+4,y+4,Data) )
                
                return color;
            
        }
    }
    // 判断"/"方向
    for ( y = 0; y < 11; y++ )
    {
        for ( x = 4; x < 15; x++ )
        {
            if ( color ==  ReadData(x,y,Data) &&
                color ==  ReadData(x-1,y+1,Data) &&
                color ==  ReadData(x-2,y+2,Data) &&
                color ==  ReadData(x-3,y+3,Data) &&
                color ==  ReadData(x-4,y+4,Data) )
                
                return color;
            
        }
    }
    // 不满足胜利条件
    return 0;
    
    
    
}
复制代码

  3. 核心算法

  如前所述,由于单片机的硬件和内存限制,我们需要在算法实现上做一些必要的妥协:

  按盘面分析填写棋型表:本程序核心模块之一,人工智能算法的根本依据。其具体实现方法如下:在下五子棋时,一定会先根据棋盘上的情况,找出当前最重要的一些点位,如“活三”、“冲四”等;然后再在其中选择落子点。但是,电脑不会像人一样分析问题,要让它知道哪是“活三”、哪是“冲四”,就得在棋盘上逐点计算,一步一步的教它。
先来分析己方的棋型,我们从棋盘左上角出发,向右逐行搜索,当遇到一个空白点时,以它为中心向左挨个查找,如果遇到己方的子则记录然后继续,如果遇到对方的子、空白点或边界就停止查找。左边完成后再向右进行同样的操作;最后把左右两边的记录合并起来,得到的数据就是该点横向上的棋型,然后把棋型的编号填入到Computer[x][y][n]中就行了(x、y代表坐标,n=0、1、2、3分别代表横、竖、左斜、右斜四个方向)。而其他三个方向的棋型也可用同样的方法得到,当搜索完整张棋盘后,己方棋型表也就填写完毕了。然后再用同样的方法填写对方棋型表。
注意:所有棋型的编号都要事先定义好,越重要的号数越大。经过我的测试,从0子到四子连珠的评分标准可以用这个数组来表达:long MarkTransform[5]={0,100,400,2000,10000};

  于是,电脑在下棋时,仅仅需要计算哪个点的评分最大,就在这点下棋。

 4. 核心算法实现和内存优化

  如果大家仔细的看了第三部分的内容,就不难得到算法核心了,但问题也来了。我们要存储Computer和人这两个巨大的三维数组。所以必须制定自己的一套内存分配规则,来尽可能减小内存占用花销。

  每个空子的位置,从左右方向的己方的子不会超过5种,所以,我们可以用4bit来存储(它可以储存8种情况)。 对每一方,例如计算机方,我们定义一个数组u16 Data[8][29], u16 和29的来源在第一节就已经讲过,是225个点的存储。至于前面的8的来源:上下左斜右斜攻击四类情况,每类需要2bit,所以要定义8这样的大小。如下图:

  

   以下是计算整个棋盘每个点的评价值,存储在Data的临时数组当中, a,b,c,d四个寄存器,分别存储x,y坐标,向左和向右两个方向的判断步数(最多到4),以及该空点在该线的连子数目。

复制代码
//Data:棋型表    TotalCheseData当前全局的棋盘数据
void
CalGameSatus(u16 Data[][29],u16 TotalCheseData[29],u8 mood) //mood=2黑方判断,mood=1;白方判断 { u8 a,b,c,d; for(a=0;a<15;a++) { for(b=0;b<15;b++) { if(ReadData(a,b,TotalCheseData)==0) { d=0; for(c=1;c<5;c++) { if(ReadData(a-c,b,TotalCheseData)!=mood||a-c==0) //左边 break; else d++; } for(c=1;c<5;c++) { if(ReadData(a+c,b,TotalCheseData)!=mood||a-c==14) //右边 break; else d++; } WriteData(a,b,Data[0],d%4); //写入横向数据 WriteData(a,b,Data[1],d/4); d=0; for(c=1;c<5;c++) { if(ReadData(a,b-c,TotalCheseData)!=mood||b-c==0) //上边 break; else d++; } for(c=1;c<5;c++) { if(ReadData(a,b+c,TotalCheseData)!=mood||b+c==14) break; else d++; } WriteData(a,b,Data[2],d%4); //纵向数据 WriteData(a,b,Data[3],d/4); //纵向数据 d=0; for(c=1;c<5;c++) { if(ReadData(a-c,b-c,TotalCheseData)!=mood||b-c==0||a-c==0) //左上 break; else d++; } for(c=1;c<5;c++) { if(ReadData(a+c,b+c,TotalCheseData)!=mood||b+c==14||a+c==14) break; else d++; } WriteData(a,b,Data[4],d%4); //左斜数据 WriteData(a,b,Data[5],d/4); d=0; for(c=1;c<5;c++) { if(ReadData(a-c,b+c,TotalCheseData)!=mood||a-c==0||b+c==14) //左下 break; else d++; } for(c=1;c<5;c++) { if(ReadData(a+c,b-c,TotalCheseData)!=mood||a+c==14||b-c==0) //右下 break; else d++; } WriteData(a,b,Data[6],d%4); //右斜数据 WriteData(a,b,Data[7],d/4); } } } }
复制代码

  获取以上的评价规则后,我们得到对某一方的最核心的计算下子位置的函数:

  在形参表中x,y通过指针的形式返回真正的计算结果, u16 Data1和 Data2分别是己方和对方的棋型表, TotalCheseData则是整个棋盘当前局势。算法挨个遍历每个点,计算该点在四个方向上的权值之和。分别计算己方和对方的值,最大评分点就是下子点。

  其实完全可以这么理解,若己方的最大值大于对方的最大值,这显然对己方是有利的,己方应该进攻大于防守; 反之,对方已占先机,我方应该放手大于进攻。

复制代码
void  CalPushPosition(u8 *X, u8 *Y,u16 Data1[][29],u16 Data2[][29],u16 TotalCheseData[29])
{
    long TotalMark,MaxMark=0;
    
    long MarkTransform[5]={0,100,400,2000,10000};
    u8 m,n,p,Mark;
    CalGameSatus(Data1,TotalCheseData,1);
    for(m=0;m<15;m++)
    {
        for(n=0;n<15;n++)
        {
            TotalMark=0;   
            for(p=0;p<4;p++ )  //对四个方向,看连子的数目,总评价分由这四个方向的值之和所决定
            {
                Mark=ReadData(m,n,Data1[2*p])+4*ReadData(m,n,Data1[2*p+1]);   //读取在x,y坐标下,连子的数目,其存储过程见棋型表存储结构
                TotalMark+=  MarkTransform[Mark];
            }
            
            if(TotalMark>MaxMark)
            {
                *X=m,*Y=n;
                MaxMark=TotalMark;
            }
        }
    }
    CalGameSatus(Data2,TotalCheseData,2);
    for(m=0;m<15;m++)
    {
        for(n=0;n<15;n++)
        {
            TotalMark=0;
            for(p=0;p<4;p++)
            {
                Mark=  ReadData(m,n,Data2[2*p])+4*ReadData(m,n,Data2[2*p+1]);
                TotalMark+=MarkTransform[Mark];         
            }
            if(TotalMark>MaxMark)
            {
                *X=m,*Y=n;
                MaxMark=TotalMark;
            }
        }
    }  
    
    
    
}
/*void
复制代码

三.  其他模块的简单介绍

  要实现五子棋,除了核心算法还有其他外围模块作为支持,有以下的函数:

  • 画棋盘,选择框
  • 键盘输入
  • 菜单选择
  • 无线对战(省略)

  考虑到不同平台和硬件环境下,这些功能的实现可能完全不同,所以我仅仅贴一些示意性代码:

  

其他模块的实现(仅供参考)
void DrawDesk()
{
    u8 m;
    Clear_Screen();
    SetPaintMode(0,COLOR_Black);
    Rectangle(23,28,205,210,1);
    SetPaintMode(0,COLOR_Yellow);
    Rectangle(20,25,202,207,1);
    SetPaintMode(0,COLOR_Black);
    for(m=0;m<15;m++)
        Line(20,25+13*m,200,25+13*m);
    for(m=0;m<15;m++)
        Line(20+13*m,25,20+13*m,207);
    //Lcd_disp(240,12,"五子棋");
    //Lcd_disp(65,36,"赵一鸣之作");
}
void Drawchess(u8 x,u8 y, u8 mood)
{
    
    if(mood==2)//黑方
    { 
        SetPaintMode(0,COLOR_Black);
        Circle(20+13*x,25+y*13,5,1);
    }
    //Rectangle(2+x*4,1+y*4,4+x*4,3+y*4,1);
    
    else if(mood==1)
    {
        
        SetPaintMode(0,COLOR_White);
        Circle(20+13*x,25+y*13,5,1);
        SetPaintMode(0,COLOR_Black);
        Circle(20+13*x,25+y*13,5,0);
    }
}

void PushChess(u8 x,u8 y,u16  Data[29],u8 mood)
{
    Drawchess(x,y,mood);
    WriteData(x,y,Data,mood);
    
    
    
}
u8 DrawKuang(u8 *x,u8 *y,u16  Data[29])
{
    
    u8 func_state=0;
     u8 GyroKey,myKey;
    while(func_state==0)
    {   
        SetPaintMode(0,COLOR_Black);
        Rectangle(14+*x*13,19+*y*13,26+*x*13,31+*y*13,0);
           if(GyroControlEN==1&&back_light>1&&GyroMenuEN)
        {
                     
                       delay_ms(200);
            L3G4200DReadData();
            L3G4200DShowData();
            
            delay_ms(200);
        }
       
        else
            InputControl(); 
             
                GyroKey=GyroKeyBoardInputMethod(0,0,300,300);
        
        if(GyroKey!=KEYNULL)
            myKey=GyroKey;
        else
             myKey=key_data;
               GyroKey=KEYNULL;
       
        SetPaintMode(0,COLOR_Yellow);
        Rectangle(14+*x*13,19+*y*13,26+*x*13,31+*y*13,0);
        SetPaintMode(0,COLOR_Black);
        
        PutPixel(20+(*x)*13,19+(*y)*13);
        PutPixel(20+(*x)*13,(*y)*13+31);
        PutPixel(14+(*x)*13,(*y)*13+25);
        PutPixel(26+(*x)*13,(*y)*13+25);
        switch(myKey)
        {
        
        case KEYENTER_UP   :
            if(ReadData(*x,*y,Data)==0)
                func_state=1;
            break;
        case KEYCANCEL_UP    :
            return 0;
                default:
                    FourDirectionInputMethod(myKey,1,1,1,1,0,14,0,14,0,0, x,y);
        }
                myKey=KEYNULL;
             
    }
    return 1;
}

四.  算法主流程(简化版)

  流程因为很简单,所以就不画了。

复制代码
while(OS_func_state==0)  //OS_func_state==0是正常的下棋状态
{
if
(func_state==0) //我方下棋 { if(DrawKuang(&XAxi,&YAxi,TotalCheseData)) PushChess(XAxi,YAxi,TotalCheseData,2); else { OS_func_state=10; //跳出态 } if(ResultCheck(TotalCheseData,2)==2) //胜利,跳出到成功界面 { OS_func_state=5; } else func_state=1; //让给对方下棋 } else //对方下棋 { GameSatusInit(myGameSatus); GameSatusInit(itGameSatus); CalPushPosition(&XAxi,&YAxi,myGameSatus,itGameSatus,TotalCheseData); PushChess(XAxi,YAxi,TotalCheseData,1); if(ResultCheck(TotalCheseData,1)==1) { OS_func_state=5; } else func_state=0; }
}
复制代码

 五. 总结和改进

  实现五子棋的算法有很多选项,比如基于博弈树的剪枝算法,和我这种比较简化的靠遍历评分的算法。这个算法来自于网上,水平仅仅算是初级,缺点也很明显,      

      只顾眼前利益,不能顾全大局,这就和许多五子棋初学者一样犯了“目光短浅”的毛病。要解决这个问题,我们引入‘今后几步预测法’,具体方法是这样的: 首先, 让电脑分析一个可能的点,
如果在这儿下子将会形成对手不得不防守的棋型(例如:‘冲四’、‘活三’);那么下一步对手就会照您的思路下子来防守您,如此一来便完成了第一步的预测。这时再调用模块4对预测后的棋进行盘面分析,如果出现了‘四三’、‘双三’或‘双四’等制胜点,那么己方就可以获胜了(当然对黑棋而言‘双三’、‘双四’是禁手,另当别论);否则照同样的方法向下分析,就可预测出第二步、第三步……

     

  不过,我做过实际的测试,加上两步迭代以后,计算时间变为原来的10倍左右(确实是指数级的),但此时内存是不够用的。考虑到是2KB内存的超低功耗单片机,实现更复杂的算法勉为其难,我也就没有在上面实现迭代,有兴趣的同学们可以尝试实现之,其实不难,用个好点的CPU,比如STM32,(用电脑就别用我这个算法了),稍微改改代码就可以。这种情况,电脑的水平在中级左右。

  系统没有随机性,换句话说,如果你每次下子的方式是一样的,那么系统演化的形式完全一致。

  顺便提一下,自从学习了C#编程以后,看了两年前写的C代码,真是不堪入目。不过,在单片机上实现的东西,效率比可读性和结构性更重要吧。

  有任何问题,欢迎随时交流。


作者:热情的沙漠
出处:http://www.cnblogs.com/buptzym/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。


本文转自FerventDesert博客园博客,原文链接:http://www.cnblogs.com/buptzym/archive/2012/06/20/2556052.html,如需转载请自行联系原作者
目录
相关文章
|
2月前
|
存储 监控 算法
解析公司屏幕监控软件中 C# 字典算法的数据管理效能与优化策略
数字化办公的时代背景下,企业为维护信息安全并提升管理效能,公司屏幕监控软件的应用日益普及。此软件犹如企业网络的 “数字卫士”,持续记录员工电脑屏幕的操作动态。然而,伴随数据量的持续增长,如何高效管理这些监控数据成为关键议题。C# 中的字典(Dictionary)数据结构,以其独特的键值对存储模式和高效的操作性能,为公司屏幕监控软件的数据管理提供了有力支持。下文将深入探究其原理与应用。
61 4
|
3月前
|
机器学习/深度学习 监控 算法
员工上网行为监控软件中基于滑动窗口的C#流量统计算法解析​
在数字化办公环境中,员工上网行为监控软件需要高效处理海量网络请求数据,同时实时识别异常行为(如高频访问非工作网站)。传统的时间序列统计方法因计算复杂度过高,难以满足低延迟需求。本文将介绍一种基于滑动窗口的C#统计算法,通过动态时间窗口管理,实现高效的行为模式分析与流量计数。
75 2
|
3月前
|
人工智能 运维 算法
基于 C# 深度优先搜索算法的局域网集中管理软件技术剖析
现代化办公环境中,局域网集中管理软件是保障企业网络高效运行、实现资源合理分配以及强化信息安全管控的核心工具。此类软件需应对复杂的网络拓扑结构、海量的设备信息及多样化的用户操作,而数据结构与算法正是支撑其强大功能的基石。本文将深入剖析深度优先搜索(Depth-First Search,DFS)算法,并结合 C# 语言特性,详细阐述其在局域网集中管理软件中的应用与实现。
85 3
|
1月前
|
存储 自然语言处理 算法
基于内存高效算法的 LLM Token 优化:一个有效降低 API 成本的技术方案
本文探讨了在构建对话系统时如何通过一种内存高效算法降低大语言模型(LLM)的Token消耗和运营成本。传统方法中,随着对话深度增加,Token消耗呈指数级增长,导致成本上升。
126 7
基于内存高效算法的 LLM Token 优化:一个有效降低 API 成本的技术方案
|
2月前
|
机器学习/深度学习 存储 监控
上网管理监控软件的 Go 语言流量特征识别算法实现与优化
本文探讨基于Go语言的流量特征识别算法,用于上网管理监控软件。核心内容涵盖AC自动机算法原理、实现及优化,通过路径压缩、哈希表存储和节点合并策略提升性能。实验表明,优化后算法内存占用降低30%,匹配速度提升20%。在1000Mbps流量下,CPU利用率低于10%,内存占用约50MB,检测准确率达99.8%。未来可进一步优化高速网络处理能力和融合机器学习技术。
95 10
|
2月前
|
监控 算法 安全
基于 PHP 的员工电脑桌面监控软件中图像差分算法的设计与实现研究
本文探讨了一种基于PHP语言开发的图像差分算法,用于员工计算机操作行为监控系统。算法通过分块比较策略和动态阈值机制,高效检测屏幕画面变化,显著降低计算复杂度与内存占用。实验表明,相比传统像素级差分算法,该方法将处理时间缩短88%,峰值内存使用量减少70%。文章还介绍了算法在工作效率优化、信息安全防护等方面的应用价值,并分析了数据隐私保护、算法准确性及资源消耗等挑战。未来可通过融合深度学习等技术进一步提升系统智能化水平。
45 2
|
2月前
|
监控 算法 JavaScript
基于 JavaScript 图算法的局域网网络访问控制模型构建及局域网禁止上网软件的技术实现路径研究
本文探讨局域网网络访问控制软件的技术框架,将其核心功能映射为图论模型,通过节点与边表示终端设备及访问关系。以JavaScript实现DFS算法,模拟访问权限判断,优化动态策略更新与多层级访问控制。结合流量监控数据,提升网络安全响应能力,为企业自主研发提供理论支持,推动智能化演进,助力数字化管理。
69 4
|
1月前
|
机器学习/深度学习 监控 算法
局域网行为监控软件 C# 多线程数据包捕获算法:基于 KMP 模式匹配的内容分析优化方案探索
本文探讨了一种结合KMP算法的多线程数据包捕获与分析方案,用于局域网行为监控。通过C#实现,该系统可高效检测敏感内容、管理URL访问、分析协议及审计日志。实验表明,相较于传统算法,KMP在处理大规模网络流量时效率显著提升。未来可在算法优化、多模式匹配及机器学习等领域进一步研究。
46 0
|
2月前
|
存储 机器学习/深度学习 算法
论上网限制软件中 Python 动态衰减权重算法于行为管控领域的创新性应用
在网络安全与行为管理的学术语境中,上网限制软件面临着精准识别并管控用户不合规网络请求的复杂任务。传统的基于静态规则库或固定阈值的策略,在实践中暴露出较高的误判率与较差的动态适应性。本研究引入一种基于 “动态衰减权重算法” 的优化策略,融合时间序列分析与权重衰减机制,旨在显著提升上网限制软件的实时决策效能。
73 2
|
3月前
|
存储 监控 算法
公司员工电脑监控软件剖析:PHP 布隆过滤器算法的应用与效能探究
在数字化办公的浪潮下,公司员工电脑监控软件成为企业管理的重要工具,它能够帮助企业了解员工的工作状态、保障数据安全以及提升工作效率。然而,随着监控数据量的不断增长,如何高效地处理和查询这些数据成为了关键问题。布隆过滤器(Bloom Filter)作为一种高效的概率型数据结构,在公司员工电脑监控软件中展现出独特的优势,本文将深入探讨 PHP 语言实现的布隆过滤器算法在该软件中的应用。
73 1

热门文章

最新文章