Spark RDD概念学习系列之RDD的依赖关系(宽依赖和窄依赖)(三)

简介:

  RDD的依赖关系?

 

     RDD和它依赖的parent RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)宽依赖(wide dependency)

     1)窄依赖指的是每一个parent RDD的Partition最多被子RDD的一个Partition使用,如图1所示。

     2)宽依赖指的是多个子RDD的Partition会依赖同一个parent RDD的Partition,如图2所示。

 

  RDD作为数据结构,本质上是一个只读的分区记录集合。一个RDD可以包含多个分区,每个分区就是一个dataset片段。RDD可以相互依赖。

  1)如果RDD的每个分区最多只能被一个Child RDD的一个分区使用,则称之为narrow dependency。

  2)如果多个Child RDD分区都可以依赖,则称之为wide / shuffle dependency 。

 

 

Spark之所以将依赖分为narrow 和 shuffle / wide 。基于两点原因

  1、首先,narrow dependencies可以支持在同一个cluster node上,以pipeline形式执行多条命令,例如在执行了map后,紧接着执行filter。

    相反,shuffle / wide dependencies 需要所有的父分区都是可用的,可能还需要调用类似MapReduce之类的操作进行跨节点传递。

     2、其次,则是从失败恢复的角度考虑。 narrow dependencies的失败恢复更有效,因为它只需要重新计算丢失的parent partition即可,而且可以并行地在不同节点进行重计算。

       相反,shuffle / wide dependencies 牵涉RDD各级的多个parent partition。

 

 

 

                          

        图 1  RDD的窄依赖                  图 2 RDD的宽依赖

 

     接下来可以从不同类型的转换来进一步理解RDD的窄依赖和宽依赖的区别,如图3所示。

     对于map和filter形式的转换来说,它们只是将Partition的数据根据转换的规则进行转化,并不涉及其他的处理,可以简单地认为只是将数据从一个形式转换到另一个形式。对于union,只是将多个RDD合并成一个,parent RDD的Partition(s)不会有任何的变化,可以认为只是把parent RDD的Partition(s)简单进行复制与合并。对于join,如果每个Partition仅仅和已知的、特定的Partition进行join,那么这个依赖关系也是窄依赖。对于这种有规则的数据的join,并不会引入昂贵的Shuffle。对于窄依赖,由于RDD每个Partition依赖固定数量的parent RDD(s)的Partition(s),因此可以通过一个计算任务来处理这些Partition,并且这些Partition相互独立,这些计算任务也就可以并行执行了。

   对于groupByKey,子RDD的所有Partition(s)会依赖于parent RDD的所有Partition(s),子RDD的Partition是parent RDD的所有Partition Shuffle的结果,因此这两个RDD是不能通过一个计算任务来完成的。同样,对于需要parent RDD的所有Partition进行join的转换,也是需要Shuffle,这类join的依赖就是宽依赖而不是前面提到的窄依赖了。

 

 

                  

  不同的操作依据其特性,可能会产生不同的依赖。例如map、filter操作会产生 narrow dependency 。reduceBykey操作会产生 wide / shuffle dependency。

 

 

 

  通俗点来说,RDD的每个Partition,仅仅依赖于父RDD中的一个Partition,这才是窄。 就这么简单!

   反正子Rdd的partition和父Rdd的Partition如果是一对一就是窄依赖,这样理解就好区分了 !!!

 
             

     我以前总感觉这是窄依赖,其实 Rdd1的partition0依赖父Rdd0的 partition0和partition1,所以是宽依赖

 

 

 

    

所有的依赖都要实现trait Dependency[T]:

abstract class Dependency[T] extends Serializable {
    def rdd: RDD[T]
}
 
  其中rdd就是依赖的parent RDD。
 
 
 
 
 
 对于窄依赖的实现(有两种
 
abstract class NarrowDependency[T](_rdd: RDD[T]) extends Dependency[T] {
    //返回子RDD的partitionId依赖的所有的parent RDD的Partition(s)
    def getParents(partitionId: Int): Seq[Int]
    override def rdd: RDD[T] = _rdd
}

  窄依赖是有两种具体实现,分别如下:

 

 
 
·一种是一对一的依赖,即OneToOneDependency
class OneToOneDependency[T](rdd: RDD[T]) extends NarrowDependency[T](rdd) {
    override def getParents(partitionId: Int) = List(partitionId)
    通过getParents的实现不难看出,RDD仅仅依赖于parent RDD相同ID的Partition。
 
 

还有一个是范围的依赖,即 RangeDependency,它仅仅被org.apache.spark.rdd.UnionRDD使用。UnionRDD是把多个RDD合成一个RDD,这些RDD是被拼接而成,即每个parent RDD的Partition的相对顺序不会变,只不过每个parent RDD在UnionRDD中的Partition的起始位置不同。因此它的getPartents如下:
复制代码
override def getParents(partitionId: Int) = {
    if(partitionId >= outStart && partitionId < outStart + length) {
       List(partitionId - outStart + inStart)
    } else {
       Nil
    }
}
复制代码

  其中,inStart是parent RDD中Partition的起始位置,outStart是在UnionRDD中的起始位置,length就是parent RDD中Partition的数量。

 

 

 

 

 

对于宽依赖的实现(只有一种

  宽依赖的实现只有一种:ShuffleDependency。子RDD依赖于parent RDD的所有Partition,因此需要Shuffle过程:

复制代码
class ShuffleDependency[K, V, C](
    @transient _rdd: RDD[_ <: Product2[K, V]],
    val partitioner: Partitioner,
    val serializer: Option[Serializer] = None,
    val keyOrdering: Option[Ordering[K]] = None,
    val aggregator: Option[Aggregator[K, V, C]] = None,
    val mapSideCombine: Boolean = false)
extends Dependency[Product2[K, V]] {
 
override def rdd = _rdd.asInstanceOf[RDD[Product2[K, V]]]
//获取新的shuffleId
val shuffleId: Int = _rdd.context.newShuffleId()
//向ShuffleManager注册Shuffle的信息
val shuffleHandle: ShuffleHandle =
_rdd.context.env.shuffleManager.registerShuffle(
    shuffleId, _rdd.partitions.size, this)
 
    _rdd.sparkContext.cleaner.foreach(_.registerShuffleForCleanup(this))
}
复制代码
   注意:宽依赖支持两种Shuffle Manager。
  即org.apache.spark.shuffle.hash.HashShuffleManager(基于Hash的Shuffle机制) org.apache.spark.shuffle.sort.SortShuffleManager(基于排序的Shuffle机制)。
 
 
 
本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/5723403.html,如需转载请自行联系原作者
相关文章
|
19天前
|
存储 缓存 分布式计算
【赵渝强老师】Spark RDD的缓存机制
Spark RDD通过`persist`或`cache`方法可将计算结果缓存,但并非立即生效,而是在触发action时才缓存到内存中供重用。`cache`方法实际调用了`persist(StorageLevel.MEMORY_ONLY)`。RDD缓存可能因内存不足被删除,建议结合检查点机制保证容错。示例中,读取大文件并多次调用`count`,使用缓存后执行效率显著提升,最后一次计算仅耗时98ms。
【赵渝强老师】Spark RDD的缓存机制
|
1月前
|
分布式计算 Spark
【赵渝强老师】Spark RDD的依赖关系和任务阶段
Spark RDD之间的依赖关系分为窄依赖和宽依赖。窄依赖指父RDD的每个分区最多被一个子RDD分区使用,如map、filter操作;宽依赖则指父RDD的每个分区被多个子RDD分区使用,如分组和某些join操作。窄依赖任务可在同一阶段完成,而宽依赖因Shuffle的存在需划分不同阶段执行。借助Spark Web Console可查看任务的DAG图及阶段划分。
92 15
|
4月前
|
存储 分布式计算 并行计算
【赵渝强老师】Spark中的RDD
RDD(弹性分布式数据集)是Spark的核心数据模型,支持分布式并行计算。RDD由分区组成,每个分区由Spark Worker节点处理,具备自动容错、位置感知调度和缓存机制等特性。通过创建RDD,可以指定分区数量,并实现计算函数、依赖关系、分区器和优先位置列表等功能。视频讲解和示例代码进一步详细介绍了RDD的组成和特性。
|
5月前
|
分布式计算 算法 Spark
spark学习之 GraphX—预测社交圈子
spark学习之 GraphX—预测社交圈子
140 0
|
5月前
|
分布式计算 Scala Spark
educoder的spark算子学习
educoder的spark算子学习
40 0
|
5月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
108 0
|
5月前
|
存储 分布式计算 算法
大数据-105 Spark GraphX 基本概述 与 架构基础 概念详解 核心数据结构
大数据-105 Spark GraphX 基本概述 与 架构基础 概念详解 核心数据结构
98 0
|
5月前
|
分布式计算 Java 大数据
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
65 0
大数据-92 Spark 集群 SparkRDD 原理 Standalone详解 ShuffleV1V2详解 RDD编程优化
|
5月前
|
SQL 分布式计算 大数据
大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化
大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化
78 0
|
5月前
|
缓存 分布式计算 大数据
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(一)
大数据-90 Spark 集群 RDD 编程-高阶 RDD容错机制、RDD的分区、自定义分区器(Scala编写)、RDD创建方式(一)
108 0