Spark RDD概念学习系列之RDD的操作(七)

简介:

RDD的操作

 

  RDD支持两种操作:转换和动作。

   1)转换,即从现有的数据集创建一个新的数据集。

   2)动作,即在数据集上进行计算后,返回一个值给Driver程序。

   例如,map就是一种转换,它将数据集每一个元素都传递给函数,并返回一个新的分布式数据集表示结果。另一个方面,reduce是一种动作,通过一些函数将所有元素叠加起来,并将最终结果返回Driver(还有一个并行的reduceByKey,能返回一个分布式数据集)。

   下图描述了从外部数据源创建RDD,经过多次转换,通过一个动作操作将结果写回外部存储系统的逻辑运行图。整个过程的计算都是在Worker中的Executor中运行。

            图 1  RDD的创建、转换和动作的逻辑计算图

 

 

 

 

 RDD的转换

      RDD中的所有转换都是惰性的,也就是说,它们并不会直接计算结果。相反的,它们只是记住这些应用到基础数据集(例如一个文件)上的转换动作。只有当发生一个要求返回结果给Driver的动作时,这些转换才会真正运行。这个设计让Spark更加有效率地运行。例如我们可以实现:通过map创建的一个新数据集,并在reduce中使用,最终只返回reduce的结果给Driver,而不是整个大的新数据集。图2描述了RDD在进行groupByRey时的内部RDD转换的实现逻辑图。图3描述了reduceByKey的实现逻辑图。

            

                图2 RDD groupByKey的逻辑转换图  

      

 

 

    在groupByKey的操作中,会在MapPartitionsRDD做一次Shuffle,图2中设置的分片数量是3,因此ShuffledRDD会有3个分片,ShuffledRDD实际上仅仅是从上游的任务中读取Shuffle的结果,因此图的箭头是指向上游的MapPartitionsRDD的。关于Shuffle的实现实际上要比图中展示得复杂得多。reduceByKey和groupByKey的实现差不多,它在Shuffle完成之后,需要做一次reduce。

               

                         图3  RDD reduceByKey 的逻辑转换图

    默认情况下,每一个转换过的RDD都会在它执行一个动作时被重新计算。不过也可以使用persist(或者cache)方法,在内存中持久化一个RDD。在这种情况下,Spark将会在集群中保存相关元素,下次查询这个RDD时能更快访问它。也支持在磁盘上持久化数据集,或在集群间复制数据集。

 

 

 

 


本文转自大数据躺过的坑博客园博客,原文链接:http://www.cnblogs.com/zlslch/p/5723751.html,如需转载请自行联系原作者

相关文章
|
2月前
|
分布式计算 Kubernetes 调度
Kubeflow-Spark-Operator-架构学习指南
本指南系统解析 Spark Operator 架构,涵盖 Kubebuilder 开发、控制器设计与云原生集成。通过四阶段学习路径,助你从部署到贡献,掌握 Kubernetes Operator 核心原理与实战技能。
166 0
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
3 秒音频也能克隆?拆解 Spark-TTS 架构的极致小样本学习
本文深入解析了 Spark-TTS 模型的架构与原理,该模型仅需 3 秒语音样本即可实现高质量的零样本语音克隆。其核心创新在于 BiCodec 单流语音编码架构,将语音信号分解为语义 Token 和全局 Token,实现内容与音色解耦。结合大型语言模型(如 Qwen 2.5),Spark-TTS 能直接生成语义 Token 并还原波形,简化推理流程。实验表明,它不仅能克隆音色、语速和语调,还支持跨语言朗读及情感调整。尽管面临相似度提升、样本鲁棒性等挑战,但其技术突破为定制化 AI 声音提供了全新可能。
559 35
|
存储 分布式计算 并行计算
【赵渝强老师】Spark中的RDD
RDD(弹性分布式数据集)是Spark的核心数据模型,支持分布式并行计算。RDD由分区组成,每个分区由Spark Worker节点处理,具备自动容错、位置感知调度和缓存机制等特性。通过创建RDD,可以指定分区数量,并实现计算函数、依赖关系、分区器和优先位置列表等功能。视频讲解和示例代码进一步详细介绍了RDD的组成和特性。
225 0
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
247 0
|
10月前
|
分布式计算 Spark
【赵渝强老师】Spark RDD的依赖关系和任务阶段
Spark RDD之间的依赖关系分为窄依赖和宽依赖。窄依赖指父RDD的每个分区最多被一个子RDD分区使用,如map、filter操作;宽依赖则指父RDD的每个分区被多个子RDD分区使用,如分组和某些join操作。窄依赖任务可在同一阶段完成,而宽依赖因Shuffle的存在需划分不同阶段执行。借助Spark Web Console可查看任务的DAG图及阶段划分。
457 15
|
10月前
|
存储 缓存 分布式计算
【赵渝强老师】Spark RDD的缓存机制
Spark RDD通过`persist`或`cache`方法可将计算结果缓存,但并非立即生效,而是在触发action时才缓存到内存中供重用。`cache`方法实际调用了`persist(StorageLevel.MEMORY_ONLY)`。RDD缓存可能因内存不足被删除,建议结合检查点机制保证容错。示例中,读取大文件并多次调用`count`,使用缓存后执行效率显著提升,最后一次计算仅耗时98ms。
291 0
【赵渝强老师】Spark RDD的缓存机制
|
分布式计算 算法 Spark
spark学习之 GraphX—预测社交圈子
spark学习之 GraphX—预测社交圈子
346 0
|
分布式计算 Scala Spark
educoder的spark算子学习
educoder的spark算子学习
202 0
|
存储 分布式计算 算法
大数据-105 Spark GraphX 基本概述 与 架构基础 概念详解 核心数据结构
大数据-105 Spark GraphX 基本概述 与 架构基础 概念详解 核心数据结构
270 0
|
消息中间件 分布式计算 Kafka
大数据-99 Spark 集群 Spark Streaming DStream 文件数据流、Socket、RDD队列流
大数据-99 Spark 集群 Spark Streaming DStream 文件数据流、Socket、RDD队列流
190 0