根据自己的理解写的读书笔记。import collections
import math
import os
import random
import zipfile
import urllib
import numpy as np
import tensorflow as tf
#定义下载文本数据的函数
# url = 'http://mattmahoney.net/dc/'
#
# def maybe_download(filename,expected_bytes):
# if not os.path.exists(filename):
# filename,_ = urllib.request.urlretrieve(url + filename,filename)
# statinfo = os.stat(filename) #访问一个文件的详细信息。
# if statinfo.st_size == expected_bytes: #文件大小(以字节为单位)
# print('Found and verified(验证)',filename)
# else:
# print(statinfo.st_size)
# raise Exception('Failed to verify(验证)' + filename + 'Can you get to it with a browser(浏览器)?')
# return filename
#
# filename = maybe_download('text8.zip',31344016)
filename = './text8.zip'
#解压文件,并将数据转化成单词的列表
def read_data(filename):
with zipfile.ZipFile(filename) as f:
#获得名字列表,读取成字符串,编码成'utf-8',最后进行分割
data = tf.compat.as_str(f.read(f.namelist()[ 0])).split()
return data
words = read_data(filename)
# print('Data size',len(words))
# print(words)
#创建词汇表,将出现最多的50000个单词作为词汇表,放入字典中。
vocabulary_size = 50000
def build_dataset(words):
count = [[ 'UNK',- 1]]
count.extend(collections.Counter(words).most_common(vocabulary_size - 1))
# c=collections.Counter(words).most_common(10)
# print(c)
# count.extend(c)
# print(count) #[['UNK', -1], ('the', 1061396), ('of', 593677), ('and', 416629), ('one', 411764), ('in', 372201), ('a', 325873), ('to', 316376), ('zero', 264975), ('nine', 250430), ('two', 192644)]
dictionary = dict() #新建空字典
for word,_ in count:
dictionary[word] = len(dictionary)
# print(dictionary) #{'UNK': 0, 'the': 1, 'of': 2, 'and': 3, 'one': 4, 'in': 5, 'a': 6, 'to': 7, 'zero': 8, 'nine': 9, 'two': 10}
data = list()
unk_count = 0 #未知单词数量
for word in words: #单词索引,不在字典中,则索引为0
if word in dictionary:
index = dictionary[word]
else:
index = 0
unk_count += 1
data.append(index)
count[ 0][ 1] = unk_count
reverse_dictionary = dict( zip(dictionary.values(),dictionary.keys()))
return data,count,dictionary,reverse_dictionary
data,count,dictionary,reverse_dictionary = build_dataset(words)
#删除原始单词列表,节约内存。打印词汇表,了解词频
del words
# print('Most common words (+UNK)',count[:5])
# print('Sample data',data[:10],[reverse_dictionary[i] for i in data[:10]])
#以上代码为数据处理,得到单词的词频和在字典中的索引
#skip-gram模式:从目标单词反推语境
data_index = 0
#生成训练用的batch数据
#batch_size为batch大小,num_skips为对每个单词生成样本数,skip_window为单词最远可以联系的距离
def generate_batch(batch_size,num_skips,skip_window):
global data_index #声明全局变量
assert batch_size % num_skips == 0 #断言batch_size是num_skips的整倍数
assert num_skips <= 2 * skip_window #断言num_skips不大于skip_window的两倍
batch = np.ndarray( shape=(batch_size), dtype=np.int32) #初始化为数组
labels = np.ndarray( shape=(batch_size, 1), dtype=np.int32)
span = 2 * skip_window + 1 #对某个单词创建相关样本时会使用到的单词数量
buffer = collections.deque( maxlen=span) #创建最大容量为span的队列,即双向队列
for _ in range(span):
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
for i in range(batch_size // num_skips): #'//'取商的整数部分
target = skip_window
targets_to_avoid = [skip_window] #因为要预测语境单词,不包括目标单词本身。所以需要一个避免列表
for j in range(num_skips):
while target in targets_to_avoid:
target = random.randint( 0, span - 1)
targets_to_avoid.append(target)
batch[i * num_skips + j] = buffer[skip_window]
labels[i * num_skips + j, 0] = buffer[target]
buffer.append(data[data_index])
data_index = (data_index + 1) % len(data)
return batch,labels
# batch,labels = generate_batch(batch_size=8,num_skips=2,skip_window=1)
# print(batch)#[3081 3081 12 12 6 6 195 195]
# print(labels)#[[5234]
# # [ 12]
# # [3081]
# # [ 6]
# # [ 12]
# # [ 195]
# # [ 6]
# # [ 2]]
# for i in range(8):
# print(batch[i],reverse_dictionary[batch[i]],'->',labels[i,0],reverse_dictionary[labels[i,0]])
batch_size = 128
embedding_size = 128 #将单词转为稠密向量的维度,一般在50~1000范围
skip_window = 1
num_skips = 2
valid_size = 16
valid_window = 100
valid_examples = np.random.choice(valid_window,valid_size, replace= False) #生成验证数据,随机抽取词频最高(前valid_window)的valid_size个单词
num_sampled = 64 #做负样本的噪声单词数量
#定义skip-gram网络结构
graph = tf.Graph()
with graph.as_default():
train_inputs = tf.placeholder(tf.int32, shape=[batch_size])
train_labels = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)
#限定所有计算都在cpu上执行,因为接下来一些计算操作在GPU上可能还没有实现
with tf.device( '/cpu:0'):
embeddings = tf.Variable(tf.random_uniform([vocabulary_size,embedding_size],- 1.0, 1.0)) #随机生成所有单词的词向量,单词表大小50000,维度128
embed = tf.nn.embedding_lookup(embeddings,train_inputs) #查找输入train_inputs在embeddings里对应的向量
#用截断正态分布truncated_normal初始化NCE Loss中的权重参数nce_weights,并将其初始化为0
nce_weights = tf.Variable(tf.truncated_normal([vocabulary_size,embedding_size], stddev= 1.0/math.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
loss = tf.reduce_mean(tf.nn.nce_loss( weights=nce_weights, biases=nce_biases, labels=train_labels, inputs=embed, num_sampled=num_sampled, num_classes=vocabulary_size))
#优化器SGD,学习率1.0
optimizer = tf.train.GradientDescentOptimizer( 1.0).minimize(loss)
#先计算embeddings的平方,并按第二维降维到1,计算嵌入向量embeddings的L2范数
norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, keep_dims= True))
#标准化embeddings
normalized_embeddings = embeddings/norm
#查询单词的嵌入向量,并计算验证单词的嵌入向量与词汇表中所有单词的相似性
valid_embeddings = tf.nn.embedding_lookup(normalized_embeddings,valid_dataset)
#transpose_b=True 将b转置
similarity = tf.matmul(valid_embeddings,normalized_embeddings, transpose_b= True)
#初始化所有模型参数
init = tf.global_variables_initializer()
num_steps = 100001 #迭代10万次
with tf.Session( graph=graph) as session:
init.run()
print( 'Initialized')
average_loss = 0
for step in range(num_steps):
batch_inputs,batch_labels = generate_batch(batch_size,num_skips,skip_window)
feed_dict = {train_inputs : batch_inputs,train_labels : batch_labels}
_,loss_val = session.run([optimizer,loss], feed_dict=feed_dict)
average_loss += loss_val
if step % 2000 == 0:
if step > 0:
average_loss /= 2000
print( 'Average loss at step ',step, ': ',average_loss)
average_loss = 0
if step % 10000 == 0:
sim = similarity.eval()
for i in range(valid_size):
valid_word = reverse_dictionary[valid_examples[i]]
top_k = 8
nearest = (-sim[i, :]).argsort()[ 1:top_k+ 1] #argsort将数组从小到大排列,并返回索引
log_str = 'Nearest to %s:' % valid_word
for k in range(top_k):
close_word = reverse_dictionary[nearest[k]]
log_str = '%s %s,' % (log_str,close_word)
print(log_str)
final_embeddings = normalized_embeddings.eval()
from sklearn.manifold import TSNE #此降维算法比PCA更高级,可视化
import matplotlib.pyplot as plt
def plot_with_labels(low_dim_embs,labels,filename= 'tsne.png'):
assert low_dim_embs.shape[ 0] >= len(labels), 'More labels than embeddings'
plt.figure( figsize=( 18, 18))
for i,label in enumerate(labels): #enumerate在字典上枚举
x,y = low_dim_embs[i,:]
plt.scatter(x,y) #显示散点图
#(工具书p242)annotate在图上添加注释,xy设置箭头所指处的坐标,xytext注释内容坐标,textcoords注释内容坐标的坐标变换方式。
#'offset points'以点为单位,相对于点xy的坐标
# ha='right'点在注释右边(right,center,left),va='bottom'点在注释底部('top', 'bottom', 'center', 'baseline')
plt.annotate(label, xy=(x,y), xytext=( 5, 2), textcoords= 'offset points', ha= 'right', va= 'bottom')
plt.savefig(filename)
#perplexity(混乱,复杂)与最近邻数有关,一般在5~50,n_iter达到最优化所需的最大迭代次数,应当不少于250次
#init='pca'pca初始化比random稳定,n_components嵌入空间的维数(即降到2维,默认为2
tsne = TSNE( perplexity= 30, n_components= 2, init= 'pca', n_iter= 5000)
plot_only = 100 #显示词频最高的一百个
low_dim_embs = tsne.fit_transform(final_embeddings[:plot_only,:])
labels = [reverse_dictionary[i] for i in range(plot_only)]
plot_with_labels(low_dim_embs,labels)
# plt.show()