Divide two integers without using multiplication, division and mod operator.
If it is overflow, return MAX_INT.
这道题让我们求两数相除,而且规定我们不能用乘法,除法和取余操作,那么我们还可以用另一神器位操作Bit Operation,思路是,如果被除数大于或等于除数,则进行如下循环,定义变量t等于除数,定义计数p,当t的两倍小于等于被除数时,进行如下循环,t扩大一倍,p扩大一倍,然后更新res和m。这道题的OJ给的一些test case非常的讨厌,因为输入的都是int型,比如被除数是-2147483648,在int范围内,当除数是-1时,结果就超出了int范围,需要返回INT_MAX,所以对于这种情况我们就在开始用if判定,将其和除数为0的情况放一起判定,返回INT_MAX。然后我们还要根据被除数和除数的正负来确定返回值的正负,这里我们采用长整型long来完成所有的计算,最后返回值乘以符号即可,代码如下:
解法一:
class Solution { public: int divide(int dividend, int divisor) { if (divisor == 0 || (dividend == INT_MIN && divisor == -1)) return INT_MAX; long long m = abs((long long)dividend), n = abs((long long)divisor), res = 0; int sign = ((dividend < 0) ^ (divisor < 0)) ? -1 : 1; if (n == 1) return sign == 1 ? m : -m; while (m >= n) { long long t = n, p = 1; while (m >= (t << 1)) { t <<= 1; p <<= 1; } res += p; m -= t; } return sign == 1 ? res : -res; } };
我们可以使上面的解法变得更加简洁:
解法二:
class Solution { public: int divide(int dividend, int divisor) { long long m = abs((long long)dividend), n = abs((long long)divisor), res = 0; if (m < n) return 0; while (m >= n) { long long t = n, p = 1; while (m > (t << 1)) { t <<= 1; p <<= 1; } res += p; m -= t; } if ((dividend < 0) ^ (divisor < 0)) res = -res; return res > INT_MAX ? INT_MAX : res; } };
我们也可以通过递归的方法来解,思路都一样:
解法三:
class Solution { public: int divide(int dividend, int divisor) { long long res = 0; long long m = abs((long long)dividend), n = abs((long long)divisor); if (m < n) return 0; long long t = n, p = 1; while (m > (t << 1)) { t <<= 1; p <<= 1; } res += p + divide(m - t, n); if ((dividend < 0) ^ (divisor < 0)) res = -res; return res > INT_MAX ? INT_MAX : res; } };
本文转自博客园Grandyang的博客,原文链接:两数相除[LeetCode] Divide Two Integers ,如需转载请自行联系原博主。