阿里巴巴iDST再出黑科技:行人检测与识别夺世界第一

简介: 1月9日消息昨日,全球权威机器视觉算法排行榜KITTI刷新了排名,阿里巴巴人工智能研究机构iDST夺得行人检测单项冠军。于此同时,在知名的行人再识别数据集Market1501中,他们也取得重大突破,首位命中率提升至96.17%,位居世界第一。

1月9日消息昨日,全球权威机器视觉算法排行榜KITTI刷新了排名,阿里巴巴人工智能研究机构iDST夺得行人检测单项冠军。于此同时,在知名的行人再识别数据集Market1501中,他们也取得重大突破,首位命中率提升至96.17%,位居世界第一。

行人检测、行人再识别是交通管理、城市平安、无人驾驶等领域的两项核心基础技术。

行人检测要求机器能够从图像或者视频中判断是否有行人,行人在哪里;行人再识别则要求机器能够识别出特定人员在不同摄像头下出现的所有图像。在景区商场人流预测、人群个性化分析、行人交通安全、无人驾驶、寻找丢失老人儿童等应用上,这两项技术可以发挥巨大的作用。

阿里巴巴iDST再出黑科技:行人检测与识别夺世界第一

行人检测技术示意

阿里巴巴iDST再出黑科技:行人检测与识别夺世界第一

行人再识别技术示意

这并非简单的人脸识别。阿里巴巴iDST副院长、IEEE Fellow华先胜说,在实际的城市场景下,大多数摄像头拍摄到的图像看不清人脸,但通过行人的整体和局部特征则可实现人员的识别。然而,实际场景中遮挡、光照、拍摄角度、拍摄距离、人物姿态等因素的变化,以及摄像头设备的不同,对行人检测和行人再识别的准确性提出了极大的挑战。

为了解决这一难题,华先胜领导的机器视觉团队采用了多项技术创新:

在行人检测技术方面,他们提出了基于目标尺寸分级的级联网络,并充分发挥感兴趣区域的上下文信息,提升网络特征提取的能力,以解决行人检测问题中存在的目标尺寸浮动大、遮挡、形变且定位不准等问题;与此同时在目标定位方面采用交叉熵正则约束来优化边框定位准确度。

在行人再识别方面,他们不仅利用最新的深度学习技术提取行人的全局特征,还提出了超分辨率模块和深度注意力网络来获得头部、躯干、四肢、携带物等局部细节特征,并提出了融合粗粒度全局特征和细粒度局部特征的新方法,进一步提高了跨摄像头场景下行人表征的一致性和行人再识别的准确性。

除了行人检测、行人识别之外,iDST还长期占据着KITTI的车辆检测世界冠军,他们在计算机视觉国际顶级期刊和会议TIP、ACM MM等发表多篇论文,与世界分享中国技术。

目前,这些技术已经全部集成到阿里云ET城市大脑当中,并在多地落地使用。华先胜说,“正如60年代的登月计划带来了通讯技术、生物工程技术大爆发一样,城市大脑已经成为世界顶尖的科技创新的平台,前所未有的难题倒逼科学家们创造前所未有的技术”。不久前,城市大脑正式成为国家四大人工智能开放创新平台之一,未来将吸引全球顶尖的研究机构共同参与创新。

据了解,阿里云ET城市大脑已经在杭州、苏州、衢州、乌镇等地落地。得益于精良的机器视觉算法,杭州城市大脑可以做到准确侦测、发现交通事故,日均事件报警500次以上,准确率达92%。

相关文章
|
人工智能
超越感官,沉浸赛场——大型体育赛事云上实战精选-第三章 2022北京冬奥会:百年奥运的黑科技-百年奥运的瞬即美学:凌空之美,分秒凝结—AI编辑部“云智剪”(下)
超越感官,沉浸赛场——大型体育赛事云上实战精选-第三章 2022北京冬奥会:百年奥运的黑科技-百年奥运的瞬即美学:凌空之美,分秒凝结—AI编辑部“云智剪”
142 0
|
机器学习/深度学习 人工智能 达摩院
超越感官,沉浸赛场——大型体育赛事云上实战精选-第三章 2022北京冬奥会:百年奥运的黑科技-百年奥运的瞬即美学:凌空之美,分秒凝结—AI编辑部“云智剪”(中)
超越感官,沉浸赛场——大型体育赛事云上实战精选-第三章 2022北京冬奥会:百年奥运的黑科技-百年奥运的瞬即美学:凌空之美,分秒凝结—AI编辑部“云智剪”
180 0
|
机器学习/深度学习 人工智能 达摩院
|
机器学习/深度学习 人工智能 达摩院
「百图生科」再添虎将,国际机器学习大牛宋乐加入李彦宏生物计算军团
近日,百图生科首席 AI 科学家宋乐接受了机器之心专访。作为世界知名机器学习专家,他领导着百图生科 AI 算法团队,为独具特色的生物计算引擎研发提供技术动力。他眼中的生物计算未来,在于「高通量干湿实验闭环」。
234 0
「百图生科」再添虎将,国际机器学习大牛宋乐加入李彦宏生物计算军团
|
机器学习/深度学习 人工智能 算法
|
机器学习/深度学习 人工智能 算法
揭秘美图影像实验室:数据、算法和一件关于美的事
自成立以来,美图影像实验室的研究成果几乎改变了美图软件、硬件中所有功能。一键美颜、实时美妆,或是时下相当流行的美图秀秀手绘功能,都有这个实验室的功劳。
372 0
揭秘美图影像实验室:数据、算法和一件关于美的事
|
数据采集 人工智能 算法
攀钢—钢铁是怎样用AI炼成的
过去20年里,尽管中国贡献了全球粗钢增量的80%,但中国钢铁业的发展不容乐观,产能过剩与结构严重失衡、全球经济下滑导致钢铁需求增速放缓、生产质量的不稳定、废品率高、高耗能以及多元化需求,给整个行业都带来了极大的挑战。中国钢企的转型升级迫在眉睫。
374 0
攀钢—钢铁是怎样用AI炼成的
|
人工智能 算法 大数据
攀钢集团,钢铁是怎样用AI炼成的
未来,钢铁企业的核心竞争力不在拥有多少产能或是固定资产,而是在于掌握了多少行代码与核心算法。同时,大量能够真正解决业务痛点的工业SaaS与工业APP将有效激活钢铁工业互联网平台的流量与活跃度。围绕工业智能应用开发将形成一个包括数据开发商、软件开发商、算法开发商在内的工业大脑生态,驱动平台真正成为一个知识共享、知识共创与知识交易的钢铁行业的“淘宝”。
7423 0
|
计算机视觉 人工智能 监控
AI魔幻行为大赏:细数机器视觉的9大应用场景
本文主要介绍了机器视觉的主要应用场景,目前绝大部分数字信息都是以图片或视频的形式存在的,若要对这些信息进行有效分析利用,则要依赖于机器视觉技术的发展,虽然目前已有的技术已经能够解决很多问题,但离解决所有问题还很遥远,因此机器视觉的应用前景还是非常广阔的。
10815 0