题目
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST’s total elements.
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
思路
根据二叉查找树的性质,中序遍历会得到递增有序的排序。所以修改一下中序遍历,找到第k个就终止遍历。
代码
/*---------------------------------------
* 日期:2015-08-03
* 作者:SJF0115
* 题目: 230.Kth Smallest Element in a BST
* 网址:https://leetcode.com/problems/kth-smallest-element-in-a-bst/
* 结果:AC
* 来源:LeetCode
* 博客:
-----------------------------------------*/
#include <iostream>
#include <vector>
#include <stack>
using namespace std;
struct TreeNode{
int val;
TreeNode *left;
TreeNode *right;
TreeNode(int x) : val(x),left(nullptr),right(nullptr){}
};
class Solution {
public:
int kthSmallest(TreeNode* root, int k) {
if(k <= 0 || root == nullptr){
return -1;
}//if
int result = 0;
int index = 0;
InOrder(root,k,index,result);
return result;
}
private:
void InOrder(TreeNode* root,int k,int &index,int &result){
if(root){
if(root->left){
InOrder(root->left,k,index,result);
}//if
++index;
// 找到目标则不用遍历
if(index > k){
return;
}//if
// 找到目标
if(index == k){
result = root->val;
return;
}//if
if(root->right){
InOrder(root->right,k,index,result);
}//if
}//if
}
};
int main(){
Solution s;
int k = 7;
TreeNode *root = new TreeNode(5);
TreeNode *node1 = new TreeNode(2);
TreeNode *node2 = new TreeNode(3);
TreeNode *node3 = new TreeNode(4);
TreeNode *node4 = new TreeNode(9);
TreeNode *node5 = new TreeNode(6);
TreeNode *node6 = new TreeNode(7);
TreeNode *node7 = new TreeNode(11);
root->left = node2;
root->right = node4;
node2->left = node1;
node2->right = node3;
node4->left = node5;
node4->right = node7;
node5->right = node6;
cout<<s.kthSmallest(root,k)<<endl;
return 0;
}
运行时间