A sequence of numbers is called a wiggle sequence if the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with fewer than two elements is trivially a wiggle sequence.
For example, [1,7,4,9,2,5]
is a wiggle sequence because the differences (6,-3,5,-7,3) are alternately positive and negative. In contrast, [1,4,7,2,5]
and [1,7,4,5,5]
are not wiggle sequences, the first because its first two differences are positive and the second because its last difference is zero.
Given a sequence of integers, return the length of the longest subsequence that is a wiggle sequence. A subsequence is obtained by deleting some number of elements (eventually, also zero) from the original sequence, leaving the remaining elements in their original order.
Examples:
Input: [1,7,4,9,2,5] Output: 6 The entire sequence is a wiggle sequence. Input: [1,17,5,10,13,15,10,5,16,8] Output: 7 There are several subsequences that achieve this length. One is [1,17,10,13,10,16,8]. Input: [1,2,3,4,5,6,7,8,9] Output: 2
Follow up:
Can you do it in O(n) time?
Credits:
Special thanks to @agave and @StefanPochmann for adding this problem and creating all test cases.
这道题给我了我们一个数组,让我们求最长摆动子序列,关于摆动Wiggle数组,可以参见LC上之前的两道题Wiggle Sort和Wiggle Sort II。题目中给的tag说明了这道题可以用DP和Greedy两种方法来做,那么我们先来看DP的做法,我们维护两个dp数组p和q,其中p[i]表示到i位置时首差值为正的摆动子序列的最大长度,q[i]表示到i位置时首差值为负的摆动子序列的最大长度。我们从i=1开始遍历数组,然后对于每个遍历到的数字,再从开头位置遍历到这个数字,然后比较nums[i]和nums[j],分别更新对应的位置,参见代码如下:
解法一:
class Solution { public: int wiggleMaxLength(vector<int>& nums) { if (nums.empty()) return 0; vector<int> p(nums.size(), 1); vector<int> q(nums.size(), 1); for (int i = 1; i < nums.size(); ++i) { for (int j = 0; j < i; ++j) { if (nums[i] > nums[j]) p[i] = max(p[i], q[j] + 1); else if (nums[i] < nums[j]) q[i] = max(q[i], p[j] + 1); } } return max(p.back(), q.back()); } };
题目中有个Follow up说要在O(n)的时间内完成,而Greedy算法正好可以达到这个要求,这里我们不在维护两个dp数组,而是维护两个变量p和q,然后遍历数组,如果当前数字比前一个数字大,则p=q+1,如果比前一个数字小,则q=p+1,最后取p和q中的较大值跟n比较,取较小的那个,参见代码如下:
解法二:
class Solution { public: int wiggleMaxLength(vector<int>& nums) { int p = 1, q = 1, n = nums.size(); for (int i = 1; i < n; ++i) { if (nums[i] > nums[i - 1]) p = q + 1; else if (nums[i] < nums[i - 1]) q = p + 1; } return min(n, max(p, q)); } };
本文转自博客园Grandyang的博客,原文链接:摆动子序列[LeetCode] Wiggle Subsequence ,如需转载请自行联系原博主。