基于序列图像的三维体绘的视线投射算法

简介: 基于序列图像的三维体绘的视线投射算法(Ray Casting) 一.体绘算法步骤   1.体数据的生成:将序列图像的象素数据部分剥离出来(如果是JPG等压缩类型的数据,还需要先解压缩),按照相对的上下层之间的关系,将其存到一内存区中,保存的原则比较简单,即能够根据象素的三维坐标最快的检索到体素的值(此处的象素值可以是灰度值、颜色值或者CT值等)。

基于序列图像的三维体绘的视线投射算法(Ray Casting)

一.体绘算法步骤
 
1.体数据的生成:
将序列图像的象素数据部分剥离出来(如果是JPG等压缩类型的数据,还需要先解压缩),按照相对的上下层之间的关系,将其存到一内存区中,保存的原则比较简单,即能够根据象素的三维坐标最快的检索到体素的值(此处的象素值可以是灰度值、颜色值或者CT值等)。
 
2.设置材质的显示属性:
某象素属于何种材质,归根到底还是由象素值来确定,所以在设置材质的时候必须首先设定材质的受用象素值的范围,即该材质的值的上限和下限,进而设定材质的色泽、透明度、镜面反射系数、漫反射系数等其他显示属性。
 
3.设置光照属性:
设置光源的数目,并设置每个光源的属性:点光源还是平行光源还是环境光源、在点光源的情况下光源的位置、在平行光源的情况下光线投射的方向、光线强度、光强是否有衰减、在衰减的情况下衰减因子如何设定、光源颜色等等。
 
4.视线投射方向的确定:
根据视窗于物体的相对位置,我们很容易确定视线的方向向量。
 
 
5.视线采样:
遍历视窗中的所有象素,由每个象素都发出一条视线,并在视线经过的物体区域进行采样,一般采用用均匀采样的方式,即沿着视线方向,每隔一段距离就进行一次采样,如此便可获取采样位置的坐标,在获取采样坐标后对采样体素进行如下处理:
 
(1)根据采样位置坐标用三线性插值的方式从体数据当中获取采用位置的体素值,进而根据体素值确定体素的属性。
 
(2)获取体素的法向量值:
利用梯度法获取体素的法向量值:
设采样获得的体素坐标为(x0,y0,z0),f(x0,y0,z0)为体素值,那么该体素的法向量值应当为为:
{f(x0+△d,y0,z0)-f(x0-△d,y0,z0),f(x0,y0+△d,z0)-f(x0,y0-△d,z0),f(x0,y0,z0+△d)-f(x0,y0,z0-△d)}
       特别要指出的是,在体数据当中,可能会存在体素在X、Y、Z方向所占的区间大小不相同的情况,在获取获取体素法向量的计算过程当中要尤为注意。
 
(3)设置体素的颜色:
根据材质属性以及光照的属性来设置体素的色泽,以单平行光源为例,体素的色泽可以表示为:
I=I0+(I1–I0)*Cosα
其中I为体素表现颜色、I0为体素材质颜色、I1为光线颜色、α为光线方向向量和体素法向量所成的角度。
 
 
(4)获取体素的不透明度:
如果物体是完全透明的,那么视线便可穿透物体,也就是说视线能量不会有任何损耗,如果物体并非完全透明,那么视线必然会被部分或者完全的阻挡,视线能量会有损失,因此可以将不透明度理解成为视线损失程度的概念:
C1=C0*C
此处的C1为视线被体素所阻挡的程度,即体素的不透明度、C0为视线射到体素之前的能量的,C为材质的不透明度。
值得指出的一点是当C0和C1相等的时候说明视线完全被阻挡,即视线到此处截止,所以完成该体素采样后,该视线的采样工作便可宣告完成
 
(5)视窗象素值的设定:
将视线上所有的采样点的色泽与其不透明度相乘之后再相加便可得该视线的象素值
 
二.提升显示效果的有效手段
 
1.缩短均匀采样方法的采样间隔,增加视线采样体素的数目。
2.增大将视窗的分辨率,从而产生更多的采样视线
 
三.提升效率的有效手段
 
1.增加均匀采样方法的采样间隔,减少视线采样体素的数目。
2.减小视窗的分辨率,从而产生更少的采样视线
目录
打赏
0
0
0
0
18
分享
相关文章
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
基于模糊神经网络的金融序列预测算法matlab仿真
本程序为基于模糊神经网络的金融序列预测算法MATLAB仿真,适用于非线性、不确定性金融数据预测。通过MAD、RSI、KD等指标实现序列预测与收益分析,运行环境为MATLAB2022A,完整程序无水印。算法结合模糊逻辑与神经网络技术,包含输入层、模糊化层、规则层等结构,可有效处理金融市场中的复杂关系,助力投资者制定交易策略。
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
基于BBO生物地理优化的三维路径规划算法MATLAB仿真
本程序基于BBO生物地理优化算法,实现三维空间路径规划的MATLAB仿真(测试版本:MATLAB2022A)。通过起点与终点坐标输入,算法可生成避障最优路径,并输出优化收敛曲线。BBO算法将路径视为栖息地,利用迁移和变异操作迭代寻优。适应度函数综合路径长度与障碍物距离,确保路径最短且安全。程序运行结果完整、无水印,适用于科研与教学场景。
基于信息论的高动态范围图像评价算法matlab仿真
本项目基于信息论开发了一种高动态范围(HDR)图像评价算法,并通过MATLAB 2022A进行仿真。该算法利用自然图像的概率模型,研究图像熵与成像动态范围的关系,提出了理想成像动态范围的计算公式。核心程序实现了图像裁剪处理、熵计算等功能,展示了图像熵与动态范围之间的关系。测试结果显示,在[μ-3σ, μ+3σ]区间内图像熵趋于稳定,表明系统动态范围足以对景物成像。此外,还探讨了HDR图像亮度和对比度对图像质量的影响,为HDR图像评价提供了理论基础。
基于Affine-Sift算法的图像配准matlab仿真
本项目展示了Affine-SIFT算法的运行效果(无水印),适用于图像配准任务,能够处理旋转、缩放、平移及仿射变换。程序基于MATLAB2022A开发,包含完整代码与操作视频。核心步骤为:先用SIFT提取特征点,再通过仿射变换实现高精度对准。
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等