Mapper 与 Reducer 解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介:

1 . 旧版 API 的 Mapper/Reducer 解析

Mapper/Reducer 中封装了应用程序的数据处理逻辑。为了简化接口,MapReduce 要求所有存储在底层分布式文件系统上的数据均要解释成 key/value 的形式,并交给Mapper/Reducer 中的 map/reduce 函数处理,产生另外一些 key/value。Mapper 与 Reducer 的类体系非常类似,我们以 Mapper 为例进行讲解。Mapper 的类图如图所示,包括初始化、Map操作和清理三部分。

(1)初始化
Mapper 继承了 JobConfigurable 接口。该接口中的 configure 方法允许通过 JobConf 参数对 Mapper 进行初始化。

(2)Map 操作
MapReduce 框架会通过 InputFormat 中 RecordReader 从 InputSplit 获取一个个 key/value 对, 并交给下面的 map() 函数处理:

void map(K1 key, V1 value, OutputCollector<K2, V2> output, Reporter reporter) throws IOException;

该函数的参数除了 key 和 value 之外, 还包括 OutputCollector 和 Reporter 两个类型的参数, 分别用于输出结果和修改 Counter 值。

(3)清理
Mapper 通过继承 Closeable 接口(它又继承了 Java IO 中的 Closeable 接口)获得 close方法,用户可通过实现该方法对 Mapper 进行清理。
MapReduce 提供了很多 Mapper/Reducer 实现,但大部分功能比较简单,具体如图所示。它们对应的功能分别是:

ChainMapper/ChainReducer:用于支持链式作业。

IdentityMapper/IdentityReducer:对于输入 key/value 不进行任何处理, 直接输出。

InvertMapper:交换 key/value 位置。

RegexMapper:正则表达式字符串匹配。

TokenMapper:将字符串分割成若干个 token(单词),可用作 WordCount 的 Mapper。

LongSumReducer:以 key 为组,对 long 类型的 value 求累加和。

对于一个 MapReduce 应用程序,不一定非要存在 Mapper。MapReduce 框架提供了比 Mapper 更通用的接口:MapRunnable,如图所示。用 户可以实现该接口以定制Mapper 的调用 方式或者自己实现 key/value 的处理逻辑,比如,Hadoop Pipes 自行实现了MapRunnable,直接将数据通过 Socket 发送给其他进程处理。提供该接口的另外一个好处是允许用户实现多线程 Mapper。

如图所示, MapReduce 提供了两个 MapRunnable 实现,分别是 MapRunner 和MultithreadedMapRunner,其中 MapRunner 为默认实现。 MultithreadedMapRunner 实现了一种多线程的 MapRunnable。 默认情况下,每个 Mapper 启动 10 个线程,通常用于非 CPU类型的作业以提供吞吐率。

2. 新版 API 的 Mapper/Reducer 解析

从图可知, 新 API 在旧 API 基础上发生了以下几个变化:

Mapper 由接口变为类,且不再继承 JobConfigurable 和 Closeable 两个接口,而是直接在类中添加了 setup 和 cleanup 两个方法进行初始化和清理工作。

将参数封装到 Context 对象中,这使得接口具有良好的扩展性。

去掉 MapRunnable 接口,在 Mapper 中添加 run 方法,以方便用户定制 map() 函数的调用方法,run 默认实现与旧版本中 MapRunner 的 run 实现一样。

新 API 中 Reducer 遍历 value 的迭代器类型变为 java.lang.Iterable,使得用户可以采用“ foreach” 形式遍历所有 value,如下所示:

void reduce(KEYIN key, Iterable<VALUEIN> values, Context context) throws IOException, InterruptedException {
    for(VALUEIN value: values)  { // 注意遍历方式
        context.write((KEYOUT) key, (VALUEOUT) value);
    }
}

Mapper类的完整代码如下:

package org.apache.hadoop.mapreduce;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.RawComparator;
import org.apache.hadoop.io.compress.CompressionCodec;
/** 
 * Maps input key/value pairs to a set of intermediate key/value pairs.  
 * 
 * <p>Maps are the individual tasks which transform input records into a 
 * intermediate records. The transformed intermediate records need not be of 
 * the same type as the input records. A given input pair may map to zero or 
 * many output pairs.</p> 
 * 
 * <p>The Hadoop Map-Reduce framework spawns one map task for each 
 * {@link InputSplit} generated by the {@link InputFormat} for the job.
 * <code>Mapper</code> implementations can access the {@link Configuration} for 
 * the job via the {@link JobContext#getConfiguration()}.
 * 
 * <p>The framework first calls 
 * {@link #setup(org.apache.hadoop.mapreduce.Mapper.Context)}, followed by
 * {@link #map(Object, Object, Context)} 
 * for each key/value pair in the <code>InputSplit</code>. Finally 
 * {@link #cleanup(Context)} is called.</p>
 * 
 * <p>All intermediate values associated with a given output key are 
 * subsequently grouped by the framework, and passed to a {@link Reducer} to  
 * determine the final output. Users can control the sorting and grouping by 
 * specifying two key {@link RawComparator} classes.</p>
 *
 * <p>The <code>Mapper</code> outputs are partitioned per 
 * <code>Reducer</code>. Users can control which keys (and hence records) go to 
 * which <code>Reducer</code> by implementing a custom {@link Partitioner}.
 * 
 * <p>Users can optionally specify a <code>combiner</code>, via 
 * {@link Job#setCombinerClass(Class)}, to perform local aggregation of the 
 * intermediate outputs, which helps to cut down the amount of data transferred 
 * from the <code>Mapper</code> to the <code>Reducer</code>.
 * 
 * <p>Applications can specify if and how the intermediate
 * outputs are to be compressed and which {@link CompressionCodec}s are to be
 * used via the <code>Configuration</code>.</p>
 *  
 * <p>If the job has zero
 * reduces then the output of the <code>Mapper</code> is directly written
 * to the {@link OutputFormat} without sorting by keys.</p>
 * 
 * <p>Example:</p>
 * <p><blockquote><pre>
 * public class TokenCounterMapper 
 *     extends Mapper<Object, Text, Text, IntWritable>{
 *    
 *   private final static IntWritable one = new IntWritable(1);
 *   private Text word = new Text();
 *   
 *   public void map(Object key, Text value, Context context) throws IOException {
 *     StringTokenizer itr = new StringTokenizer(value.toString());
 *     while (itr.hasMoreTokens()) {
 *       word.set(itr.nextToken());
 *       context.collect(word, one);
 *     }
 *   }
 * }
 * </pre></blockquote></p>
 *
 * <p>Applications may override the {@link #run(Context)} method to exert 
 * greater control on map processing e.g. multi-threaded <code>Mapper</code>s 
 * etc.</p>
 * 
 * @see InputFormat
 * @see JobContext
 * @see Partitioner  
 * @see Reducer
 */
public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {

  public class Context 
    extends MapContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> {
    public Context(Configuration conf, TaskAttemptID taskid,
                   RecordReader<KEYIN,VALUEIN> reader,
                   RecordWriter<KEYOUT,VALUEOUT> writer,
                   OutputCommitter committer,
                   StatusReporter reporter,
                   InputSplit split) throws IOException, InterruptedException {
      super(conf, taskid, reader, writer, committer, reporter, split);
    }
  }
  /**
   * Called once at the beginning of the task.
   */
  protected void setup(Context context
                       ) throws IOException, InterruptedException {
    // NOTHING
  }
  /**
   * Called once for each key/value pair in the input split. Most applications
   * should override this, but the default is the identity function.
   */
  @SuppressWarnings("unchecked")
  protected void map(KEYIN key, VALUEIN value, 
                     Context context) throws IOException, InterruptedException {
    context.write((KEYOUT) key, (VALUEOUT) value);
  }
  /**
   * Called once at the end of the task.
   */
  protected void cleanup(Context context
                         ) throws IOException, InterruptedException {
    // NOTHING
  }
  /**
   * Expert users can override this method for more complete control over the
   * execution of the Mapper.
   * @param context
   * @throws IOException
   */
  public void run(Context context) throws IOException, InterruptedException {
    setup(context);
    while (context.nextKeyValue()) {
      map(context.getCurrentKey(), context.getCurrentValue(), context);
    }
    cleanup(context);
  }
}

从代码中可以看到,Mapper类中定义了一个新的类Context,继承自MapContext

我们来看看MapContext类的源代码:

package org.apache.hadoop.mapreduce;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
/**
 * The context that is given to the {@link Mapper}.
 * @param <KEYIN> the key input type to the Mapper
 * @param <VALUEIN> the value input type to the Mapper
 * @param <KEYOUT> the key output type from the Mapper
 * @param <VALUEOUT> the value output type from the Mapper
 */
public class MapContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> 
  extends TaskInputOutputContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> {
  private RecordReader<KEYIN,VALUEIN> reader;
  private InputSplit split;

  public MapContext(Configuration conf, TaskAttemptID taskid,
                    RecordReader<KEYIN,VALUEIN> reader,
                    RecordWriter<KEYOUT,VALUEOUT> writer,
                    OutputCommitter committer,
                    StatusReporter reporter,
                    InputSplit split) {
    super(conf, taskid, writer, committer, reporter);
    this.reader = reader;
    this.split = split;
  }
  /**
   * Get the input split for this map.
   */
  public InputSplit getInputSplit() {
    return split;
  }
  @Override
  public KEYIN getCurrentKey() throws IOException, InterruptedException {
    return reader.getCurrentKey();
  }
  @Override
  public VALUEIN getCurrentValue() throws IOException, InterruptedException {
    return reader.getCurrentValue();
  }
  @Override
  public boolean nextKeyValue() throws IOException, InterruptedException {
    return reader.nextKeyValue();
  }
}

MapContext类继承自TaskInputOutputContext,再看看TaskInputOutputContext类的代码:

package org.apache.hadoop.mapreduce;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.util.Progressable;
/**
 * A context object that allows input and output from the task. It is only
 * supplied to the {@link Mapper} or {@link Reducer}.
 * @param <KEYIN> the input key type for the task
 * @param <VALUEIN> the input value type for the task
 * @param <KEYOUT> the output key type for the task
 * @param <VALUEOUT> the output value type for the task
 */
public abstract class TaskInputOutputContext<KEYIN,VALUEIN,KEYOUT,VALUEOUT> 
       extends TaskAttemptContext implements Progressable {
  private RecordWriter<KEYOUT,VALUEOUT> output;
  private StatusReporter reporter;
  private OutputCommitter committer;

  public TaskInputOutputContext(Configuration conf, TaskAttemptID taskid,
                                RecordWriter<KEYOUT,VALUEOUT> output,
                                OutputCommitter committer,
                                StatusReporter reporter) {
    super(conf, taskid);
    this.output = output;
    this.reporter = reporter;
    this.committer = committer;
  }
  /**
   * Advance to the next key, value pair, returning null if at end.
   * @return the key object that was read into, or null if no more
   */
  public abstract 
  boolean nextKeyValue() throws IOException, InterruptedException;
  /**
   * Get the current key.
   * @return the current key object or null if there isn't one
   * @throws IOException
   * @throws InterruptedException
   */
  public abstract 
  KEYIN getCurrentKey() throws IOException, InterruptedException;
  /**
   * Get the current value.
   * @return the value object that was read into
   * @throws IOException
   * @throws InterruptedException
   */
  public abstract VALUEIN getCurrentValue() throws IOException, 
                                                   InterruptedException;
  /**
   * Generate an output key/value pair.
   */
  public void write(KEYOUT key, VALUEOUT value
                    ) throws IOException, InterruptedException {
    output.write(key, value);
  }
  public Counter getCounter(Enum<?> counterName) {
    return reporter.getCounter(counterName);
  }
  public Counter getCounter(String groupName, String counterName) {
    return reporter.getCounter(groupName, counterName);
  }
  @Override
  public void progress() {
    reporter.progress();
  }
  @Override
  public void setStatus(String status) {
    reporter.setStatus(status);
  }
  public OutputCommitter getOutputCommitter() {
    return committer;
  }
}

TaskInputOutputContext类继承自TaskAttemptContext,实现了Progressable接口,先看看Progressable接口的代码:

package org.apache.hadoop.util;
/**
 * A facility for reporting progress.
 * 
 * <p>Clients and/or applications can use the provided <code>Progressable</code>
 * to explicitly report progress to the Hadoop framework. This is especially
 * important for operations which take an insignificant amount of time since,
 * in-lieu of the reported progress, the framework has to assume that an error
 * has occured and time-out the operation.</p>
 */
public interface Progressable {
  /**
   * Report progress to the Hadoop framework.
   */
  public void progress();
}

TaskAttemptContext类的代码:

package org.apache.hadoop.mapreduce;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.util.Progressable;
/**
 * The context for task attempts.
 */
public class TaskAttemptContext extends JobContext implements Progressable {
  private final TaskAttemptID taskId;
  private String status = "";
  
  public TaskAttemptContext(Configuration conf, 
                            TaskAttemptID taskId) {
    super(conf, taskId.getJobID());
    this.taskId = taskId;
  }
  /**
   * Get the unique name for this task attempt.
   */
  public TaskAttemptID getTaskAttemptID() {
    return taskId;
  }

  /**
   * Set the current status of the task to the given string.
   */
  public void setStatus(String msg) throws IOException {
    status = msg;
  }
  /**
   * Get the last set status message.
   * @return the current status message
   */
  public String getStatus() {
    return status;
  }
  /**
   * Report progress. The subtypes actually do work in this method.
   */
  public void progress() { 
  }
}

TaskAttemptContext继承自类JobContext,最后来看看JobContext的源代码:

package org.apache.hadoop.mapreduce;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.RawComparator;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;
/**
 * A read-only view of the job that is provided to the tasks while they
 * are running.
 */
public class JobContext {
  // Put all of the attribute names in here so that Job and JobContext are
  // consistent.
  protected static final String INPUT_FORMAT_CLASS_ATTR = 
    "mapreduce.inputformat.class";
  protected static final String MAP_CLASS_ATTR = "mapreduce.map.class";
  protected static final String COMBINE_CLASS_ATTR = "mapreduce.combine.class";
  protected static final String REDUCE_CLASS_ATTR = "mapreduce.reduce.class";
  protected static final String OUTPUT_FORMAT_CLASS_ATTR = 
    "mapreduce.outputformat.class";
  protected static final String PARTITIONER_CLASS_ATTR = 
    "mapreduce.partitioner.class";

  protected final org.apache.hadoop.mapred.JobConf conf;
  private final JobID jobId;
  
  public JobContext(Configuration conf, JobID jobId) {
    this.conf = new org.apache.hadoop.mapred.JobConf(conf);
    this.jobId = jobId;
  }
  /**
   * Return the configuration for the job.
   * @return the shared configuration object
   */
  public Configuration getConfiguration() {
    return conf;
  }

  /**
   * Get the unique ID for the job.
   * @return the object with the job id
   */
  public JobID getJobID() {
    return jobId;
  }
  /**
   * Get configured the number of reduce tasks for this job. Defaults to 
   * <code>1</code>.
   * @return the number of reduce tasks for this job.
   */
  public int getNumReduceTasks() {
    return conf.getNumReduceTasks();
  }
  /**
   * Get the current working directory for the default file system.
   * 
   * @return the directory name.
   */
  public Path getWorkingDirectory() throws IOException {
    return conf.getWorkingDirectory();
  }
  /**
   * Get the key class for the job output data.
   * @return the key class for the job output data.
   */
  public Class<?> getOutputKeyClass() {
    return conf.getOutputKeyClass();
  }
  /**
   * Get the value class for job outputs.
   * @return the value class for job outputs.
   */
  public Class<?> getOutputValueClass() {
    return conf.getOutputValueClass();
  }
  /**
   * Get the key class for the map output data. If it is not set, use the
   * (final) output key class. This allows the map output key class to be
   * different than the final output key class.
   * @return the map output key class.
   */
  public Class<?> getMapOutputKeyClass() {
    return conf.getMapOutputKeyClass();
  }
  /**
   * Get the value class for the map output data. If it is not set, use the
   * (final) output value class This allows the map output value class to be
   * different than the final output value class.
   *  
   * @return the map output value class.
   */
  public Class<?> getMapOutputValueClass() {
    return conf.getMapOutputValueClass();
  }
  /**
   * Get the user-specified job name. This is only used to identify the 
   * job to the user.
   * 
   * @return the job's name, defaulting to "".
   */
  public String getJobName() {
    return conf.getJobName();
  }
  /**
   * Get the {@link InputFormat} class for the job.
   * 
   * @return the {@link InputFormat} class for the job.
   */
  @SuppressWarnings("unchecked")
  public Class<? extends InputFormat<?,?>> getInputFormatClass() 
     throws ClassNotFoundException {
    return (Class<? extends InputFormat<?,?>>) 
      conf.getClass(INPUT_FORMAT_CLASS_ATTR, TextInputFormat.class);
  }
  /**
   * Get the {@link Mapper} class for the job.
   * 
   * @return the {@link Mapper} class for the job.
   */
  @SuppressWarnings("unchecked")
  public Class<? extends Mapper<?,?,?,?>> getMapperClass() 
     throws ClassNotFoundException {
    return (Class<? extends Mapper<?,?,?,?>>) 
      conf.getClass(MAP_CLASS_ATTR, Mapper.class);
  }
  /**
   * Get the combiner class for the job.
   * 
   * @return the combiner class for the job.
   */
  @SuppressWarnings("unchecked")
  public Class<? extends Reducer<?,?,?,?>> getCombinerClass() 
     throws ClassNotFoundException {
    return (Class<? extends Reducer<?,?,?,?>>) 
      conf.getClass(COMBINE_CLASS_ATTR, null);
  }
  /**
   * Get the {@link Reducer} class for the job.
   * 
   * @return the {@link Reducer} class for the job.
   */
  @SuppressWarnings("unchecked")
  public Class<? extends Reducer<?,?,?,?>> getReducerClass() 
     throws ClassNotFoundException {
    return (Class<? extends Reducer<?,?,?,?>>) 
      conf.getClass(REDUCE_CLASS_ATTR, Reducer.class);
  }
  /**
   * Get the {@link OutputFormat} class for the job.
   * 
   * @return the {@link OutputFormat} class for the job.
   */
  @SuppressWarnings("unchecked")
  public Class<? extends OutputFormat<?,?>> getOutputFormatClass() 
     throws ClassNotFoundException {
    return (Class<? extends OutputFormat<?,?>>) 
      conf.getClass(OUTPUT_FORMAT_CLASS_ATTR, TextOutputFormat.class);
  }
  /**
   * Get the {@link Partitioner} class for the job.
   * 
   * @return the {@link Partitioner} class for the job.
   */
  @SuppressWarnings("unchecked")
  public Class<? extends Partitioner<?,?>> getPartitionerClass() 
     throws ClassNotFoundException {
    return (Class<? extends Partitioner<?,?>>) 
      conf.getClass(PARTITIONER_CLASS_ATTR, HashPartitioner.class);
  }
  /**
   * Get the {@link RawComparator} comparator used to compare keys.
   * 
   * @return the {@link RawComparator} comparator used to compare keys.
   */
  public RawComparator<?> getSortComparator() {
    return conf.getOutputKeyComparator();
  }
  /**
   * Get the pathname of the job's jar.
   * @return the pathname
   */
  public String getJar() {
    return conf.getJar();
  }
  /** 
   * Get the user defined {@link RawComparator} comparator for 
   * grouping keys of inputs to the reduce.
   * 
   * @return comparator set by the user for grouping values.
   * @see Job#setGroupingComparatorClass(Class) for details.  
   */
  public RawComparator<?> getGroupingComparator() {
    return conf.getOutputValueGroupingComparator();
  }
}
目录
相关文章
|
8月前
|
数据处理 数据库 流计算
Flink 操作mapper、sink解析
Flink 操作mapper、sink解析
84 0
|
8月前
|
Java 数据库连接 API
SpringBoot【问题 01】借助@PostConstruct解决使用@Component注解的类用@Resource注入Mapper接口为null的问题(原因解析+解决方法)
SpringBoot【问题 01】借助@PostConstruct解决使用@Component注解的类用@Resource注入Mapper接口为null的问题(原因解析+解决方法)
825 0
|
Java 数据库连接 数据库
解析 Java 中的 @Mapper 注解:优雅实现对象映射的高效利器
在现代软件开发中,对象映射是一个常见的任务,而 Java 中的 `@Mapper` 注解则是实现对象映射的强大工具。通过该注解,我们可以轻松地定义对象之间的映射关系,提高代码的可读性和可维护性。本文将带您深入探索 Java 中的 `@Mapper` 注解,揭示其作用、用法以及在实际开发中的应用场景。
|
Java 数据库连接 mybatis
MyBatis框架:第五章:源码解析及Mapper接口方式的mybatis的增,删,改,查实现
MyBatis框架:第五章:源码解析及Mapper接口方式的mybatis的增,删,改,查实现
125 0
MyBatis框架:第五章:源码解析及Mapper接口方式的mybatis的增,删,改,查实现
|
XML SQL 设计模式
mybatis mapper 接口注册流程源码解析
mybatis mapper 接口注册流程源码解析
272 0
mybatis mapper 接口注册流程源码解析
J3
|
SQL XML 安全
解析 MyBatis 中 Mapper 生效的前因后果
解析 MyBatis 中 Mapper 生效的前因后果
J3
280 0
解析 MyBatis 中 Mapper 生效的前因后果
|
SQL Java 数据库连接
mybatis mapper解析(4)
开篇  这篇文章的目的主要是想讲清楚mapper标签的解析过程,核心目的是想讲清楚/mapper/resultMap、/mapper/sql、select|insert|update|delete 这三大类标签的解析过程,以及生成最终的解析对象并保存到Configuration当中。
1028 0
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
87 2
|
12天前
|
存储 设计模式 算法
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行为。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象行为模式比类行为模式具有更大的灵活性。 行为型模式分为: • 模板方法模式 • 策略模式 • 命令模式 • 职责链模式 • 状态模式 • 观察者模式 • 中介者模式 • 迭代器模式 • 访问者模式 • 备忘录模式 • 解释器模式
【23种设计模式·全精解析 | 行为型模式篇】11种行为型模式的结构概述、案例实现、优缺点、扩展对比、使用场景、源码解析
|
12天前
|
设计模式 存储 安全
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析
结构型模式描述如何将类或对象按某种布局组成更大的结构。它分为类结构型模式和对象结构型模式,前者采用继承机制来组织接口和类,后者釆用组合或聚合来组合对象。由于组合关系或聚合关系比继承关系耦合度低,满足“合成复用原则”,所以对象结构型模式比类结构型模式具有更大的灵活性。 结构型模式分为以下 7 种: • 代理模式 • 适配器模式 • 装饰者模式 • 桥接模式 • 外观模式 • 组合模式 • 享元模式
【23种设计模式·全精解析 | 创建型模式篇】5种创建型模式的结构概述、实现、优缺点、扩展、使用场景、源码解析

推荐镜像

更多