Hadoop的namenode的管理机制,工作机制和datanode的工作原理

简介: HDFS前言:   1) 设计思想     分而治之:将大文件、大批量文件,分布式存放在大量服务器上,以便于采取分而治之的方式对海量数据进行运算分析;   2)在大数据系统中作用:     为各类分布式运算框架(如:mapreduce,spark,tez,……)提供数据存储服务   3...

HDFS前言:

  1) 设计思想

    分而治之:将大文件、大批量文件,分布式存放在大量服务器上,以便于采取分而治之的方式对海量数据进行运算分析

  2)在大数据系统中作用:

    为各类分布式运算框架(如:mapreduce,spark,tez,……)提供数据存储服务

  3)重点概念:文件切块,副本存放,元数据

1:分布式文件系统(Distributed File System):

(1):数据量越来越多,在一个操作系统管辖的范围存不下了,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,因此迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统 。
(2):是一种允许文件通过网络在多台主机上分享的文件系统,可让多机器上的多用户分享文件和存储空间。
(3):通透性。让实际上是通过网络来访问文件的动作,由程序与用户看来,就像是访问本地的磁盘一般。
(4):容错。即使系统中有某些节点脱机,整体来说系统仍然可以持续运作而不会有数据损失。
(5):分布式文件管理系统很多,hdfs只是其中一种。适用于一次写入多次查询的情况,不支持并发写情况,小文件不合适。

2:Hadoop最擅长的是(离线 )日志分析   

(1):HDFS----》海量数据的存储

(2):MapReduce----》海量数据的分析

(3):YARN----》资源管理调度

3:HDFS的Shell

(1):调用文件系统(FS)Shell命令应使用 bin/hadoop fs 的形式。
(2):所有的FS shell命令使用URI路径作为参数。
   URI格式是scheme://authority/path。HDFS的scheme是hdfs,对本地文件系统,scheme是file。其中scheme和authority参数都是可选的,如果未加指定,就会使用配置中指定的默认scheme。
   例如:/parent/child可以表示成hdfs://namenode:namenodePort/parent/child,或者更简单的/parent/child(假设配置文件是namenode:namenodePort)
(3):大多数FS Shell命令的行为和对应的Unix Shell命令类似。

4:HDFS fs命令

(1)-help [cmd]    //显示命令的帮助信息
(2)-ls(r) <path>    //显示当前目录下所有文件
(3)-du(s) <path>    //显示目录中所有文件大小
(4)-count[-q] <path>    //显示目录中文件数量
(5)-mv <src> <dst>    //移动多个文件到目标目录
(6)-cp <src> <dst>    //复制多个文件到目标目录
(7)-rm(r)        //删除文件(夹)
(8)-put <localsrc> <dst>    //本地文件复制到hdfs
(9)-copyFromLocal    //同put
(10)-moveFromLocal    //从本地文件移动到hdfs
(11)-get [-ignoreCrc] <src> <localdst>    //复制文件到本地,可以忽略crc校验
(12)-getmerge <src> <localdst>        //将源目录中的所有文件排序合并到一个文件中
(13)-cat <src>    //在终端显示文件内容
(14)-text <src>    //在终端显示文件内容
(15)-copyToLocal [-ignoreCrc] <src> <localdst>    //复制到本地
(16)-moveToLocal <src> <localdst>
(17)-mkdir <path>    //创建文件夹
(18)-touchz <path>    //创建一个空文件

5:HDFS的Shell命令练习

(1)#hadoop fs -ls /  查看HDFS根目录
(2)#hadoop fs -mkdir /test 在根目录创建一个目录test
(3)#hadoop fs -mkdir /test1 在根目录创建一个目录test1
(4)#hadoop fs -put ./test.txt /test 或#hadoop fs -copyFromLocal ./test.txt /test
(5)#hadoop fs -get /test/test.txt . 或#hadoop fs -getToLocal /test/test.txt .
(6)#hadoop fs -cp /test/test.txt /test1
(7)#hadoop fs -rm /test1/test.txt
(8)#hadoop fs -mv /test/test.txt /test1
(9)#hadoop fs -rmr /test1  

6:HDFS架构

(1)NameNode
(2)DataNode
(3)Secondary NameNode

7:NameNode

(1)是整个文件系统的管理节点。它维护着整个文件系统的文件目录树,文件/目录的元信息和每个文件对应的数据块列表。接收用户的操作请求。
(2)文件包括:
fsimage:元数据镜像文件。存储某一时段NameNode内存元数据信息。
edits:操作日志文件。
fstime:保存最近一次checkpoint的时间
(3)以上这些文件是保存在linux的文件系统中。

8:NameNode的工作特点

(1)Namenode始终在内存中保存metedata,用于处理“读请求”
(2)到有“写请求”到来时,namenode会首先写editlog到磁盘,即向edits文件中写日志,成功返回后,才会修改内存,并且向客户端返回
(3)Hadoop会维护一个fsimage文件,也就是namenode中metedata的镜像,但是fsimage不会随时与namenode内存中的metedata保持一致,而是每隔一段时间通过合并edits文件来更新内容。Secondary namenode就是用来合并fsimage和edits文件来更新NameNode的metedata的。

9:SecondaryNameNode

(1)HA的一个解决方案。但不支持热备。配置即可。
(2)执行过程:从NameNode上下载元数据信息(fsimage,edits),然后把二者合并,生成新的fsimage,在本地保存,并将其推送到NameNode,替换旧的fsimage.
(3)默认在安装在NameNode节点上,但这样...不安全!

10:secondary namenode的工作流程

(1)secondary通知namenode切换edits文件
(2)secondary从namenode获得fsimage和edits(通过http)
(3)secondary将fsimage载入内存,然后开始合并edits
(4)secondary将新的fsimage发回给namenode
(5)namenode用新的fsimage替换旧的fsimage

11:什么时候checkpiont

(1)fs.checkpoint.period 指定两次checkpoint的最大时间间隔,默认3600秒。

(2)fs.checkpoint.size    规定edits文件的最大值,一旦超过这个值则强制checkpoint,不管是否到达最大时间间隔。默认大小是64M。

12:NameNode和SecondNameNode之间的联系

 13:Datanode

(1)提供真实文件数据的存储服务。
(2)文件块(block):最基本的存储单位。对于文件内容而言,一个文件的长度大小是size,那么从文件的0偏移开始,按照固定的大小,顺序对文件进行划分并编号,划分好的每一个块称一个Block。HDFS默认Block大小是128MB,以一个256MB文件,共有256/128=2个Block.
dfs.block.size
(3)不同于普通文件系统的是,HDFS中,如果一个文件小于一个数据块的大小,并不占用整个数据块存储空间
(4)Replication。多复本。默认是三个。hdfs-site.xml的dfs.replication属性

14:Remote Procedure Call

(1)RPC——远程过程调用协议,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发包括网络分布式多程序在内的应用程序更加容易。

(2)RPC采用客户机/服务器模式。请求程序就是一个客户机,而服务提供程序就是一个服务器。首先,客户机调用进程发送一个有进程参数的调用信息到服务进程,然后等待应答信息。在服务器端,进程保持睡眠状态直到调用信息的到达为止。当一个调用信息到达,服务器获得进程参数,计算结果,发送答复信息,然后等待下一个调用信息,最后,客户端调用进程接收答复信息,获得进程结果,然后调用执行继续进行。

(3)hadoop的整个体系结构就是构建在RPC之上的(见org.apache.hadoop.ipc)。

15:HDFS读过程

(1)初始化FileSystem,然后客户端(client)用FileSystem的open()函数打开文件
(2)FileSystem用RPC调用元数据节点,得到文件的数据块信息,对于每一个数据块,元数据节点返回保存数据块的数据节点的地址。
(3)FileSystem返回FSDataInputStream给客户端,用来读取数据,客户端调用stream的read()函数开始读取数据。
(4)DFSInputStream连接保存此文件第一个数据块的最近的数据节点,data从数据节点读到客户端(client)
(5)当此数据块读取完毕时,DFSInputStream关闭和此数据节点的连接,然后连接此文件下一个数据块的最近的数据节点。
(6)当客户端读取完毕数据的时候,调用FSDataInputStream的close函数。
(7)在读取数据的过程中,如果客户端在与数据节点通信出现错误,则尝试连接包含此数据块的下一个数据节点。
(8)失败的数据节点将被记录,以后不再连接。

16:HDFS写过程

(1)初始化FileSystem,客户端调用create()来创建文件
(2)FileSystem用RPC调用元数据节点,在文件系统的命名空间中创建一个新的文件,元数据节点首先确定文件原来不存在,并且客户端有创建文件的权限,然后创建新文件。
(3)FileSystem返回DFSOutputStream,客户端用于写数据,客户端开始写入数据。
(4)DFSOutputStream将数据分成块,写入data queue。data queue由Data Streamer读取,并通知元数据节点分配数据节点,用来存储数据块(每块默认复制3块)。分配的数据节点放在一个pipeline里。Data Streamer将数据块写入pipeline中的第一个数据节点。第一个数据节点将数据块发送给第二个数据节点。第二个数据节点将数据发送给第三个数据节点。
(5)DFSOutputStream为发出去的数据块保存了ack queue,等待pipeline中的数据节点告知数据已经写入成功。
(6)当客户端结束写入数据,则调用stream的close函数。此操作将所有的数据块写入pipeline中的数据节点,并等待ack queue返回成功。最后通知元数据节点写入完毕。
(7)如果数据节点在写入的过程中失败,关闭pipeline,将ack queue中的数据块放入data queue的开始,当前的数据块在已经写入的数据节点中被元数据节点赋予新的标示,则错误节点重启后能够察觉其数据块是过时的,会被删除。失败的数据节点从pipeline中移除,另外的数据块则写入pipeline中的另外两个数据节点。元数据节点则被通知此数据块是复制块数不足,将来会再创建第三份备份。

 17:HDFS的架构

(1)主从结构
  主节点, namenode
  从节点,有很多个: datanode
(2)namenode负责:
  接收用户操作请求
  维护文件系统的目录结构
  管理文件与block之间关系,block与datanode之间关系
(3)datanode负责:
  存储文件
  文件被分成block存储在磁盘上
  为保证数据安全,文件会有多个副本

18:Hadoop部署方式

(1)本地模式
(2)伪分布模式
(3)集群模式

19:Hadoop的特点

(1)扩容能力(Scalable):能可靠地(reliably)存储和处理千兆字节(PB)数据。
(2)成本低(Economical):可以通过普通机器组成的服务器群来分发以及处理数据。这些服务器群总计可达数千个节点。
(3)高效率(Efficient):通过分发数据,hadoop可以在数据所在的节点上并行地(parallel)处理它们,这使得处理非常的快速。
(4)可靠性(Reliable):hadoop能自动地维护数据的多份副本,并且在任务失败后能自动地重新部署(redeploy)计算任务。

 20:HDFS的概念和特性:

  1)首先,它是一个文件系统,用于存储文件,通过统一的命名空间——目录树来定位文件

  2)其次,它是分布式的,由很多服务器联合起来实现其功能,集群中的服务器有各自的角色;

  3)重要特性如下:

    (1)HDFS中的文件在物理上是分块存储(block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在hadoop2.x版本中是128M,老版本中是64M

    (2)HDFS文件系统会给客户端提供一个统一的抽象目录树,客户端通过路径来访问文件,形如:hdfs://namenode:port/dir-a/dir-b/dir-c/file.data

    (3)目录结构及文件分块信息(元数据)的管理由namenode节点承担

      namenode是HDFS集群主节点,负责维护整个hdfs文件系统的目录树,以及每一个路径(文件)所对应的block块信息(block的id,及所在的datanode服务器)

    (4)文件的各个block的存储管理由datanode节点承担

      datanode是HDFS集群从节点,每一个block都可以在多个datanode上存储多个副本(副本数量也可以通过参数设置dfs.replication)

    (5)HDFS是设计成适应一次写入,多次读出的场景,且不支持文件的修改

  注意:适合用来做数据分析,并不适合用来做网盘应用,因为,不便修改,延迟大,网络开销大,成本太高;

22:hadoop常用命令参数介绍:

-help             
功能:输出这个命令参数手册
-ls                  
功能:显示目录信息
示例: hadoop fs -ls hdfs://hadoop-server01:9000/
备注:这些参数中,所有的hdfs路径都可以简写
-->hadoop fs -ls /   等同于上一条命令的效果
-mkdir              
功能:在hdfs上创建目录
示例:hadoop fs  -mkdir  -p  /aaa/bbb/cc/dd
-moveFromLocal            
功能:从本地剪切粘贴到hdfs
示例:hadoop  fs  - moveFromLocal  /home/hadoop/a.txt  /aaa/bbb/cc/dd
-moveToLocal              
功能:从hdfs剪切粘贴到本地
示例:hadoop  fs  - moveToLocal   /aaa/bbb/cc/dd  /home/hadoop/a.txt
--appendToFile  
功能:追加一个文件到已经存在的文件末尾
示例:hadoop  fs  -appendToFile  ./hello.txt  hdfs://hadoop-server01:9000/hello.txt
可以简写为:
Hadoop  fs  -appendToFile  ./hello.txt  /hello.txt

-cat  
功能:显示文件内容  
示例:hadoop fs -cat  /hello.txt

-tail                 
功能:显示一个文件的末尾
示例:hadoop  fs  -tail  /weblog/access_log.1
-text                  
功能:以字符形式打印一个文件的内容
示例:hadoop  fs  -text  /weblog/access_log.1
-chgrp
-chmod
-chown
功能:linux文件系统中的用法一样,对文件所属权限
示例:
hadoop  fs  -chmod  666  /hello.txt
hadoop  fs  -chown  someuser:somegrp   /hello.txt
-copyFromLocal    
功能:从本地文件系统中拷贝文件到hdfs路径去
示例:hadoop  fs  -copyFromLocal  ./jdk.tar.gz  /aaa/
-copyToLocal      
功能:从hdfs拷贝到本地
示例:hadoop fs -copyToLocal /aaa/jdk.tar.gz
-cp              
功能:从hdfs的一个路径拷贝hdfs的另一个路径
示例: hadoop  fs  -cp  /aaa/jdk.tar.gz  /bbb/jdk.tar.gz.2

-mv                     
功能:在hdfs目录中移动文件
示例: hadoop  fs  -mv  /aaa/jdk.tar.gz  /
-get              
功能:等同于copyToLocal,就是从hdfs下载文件到本地
示例:hadoop fs -get  /aaa/jdk.tar.gz
-getmerge             
功能:合并下载多个文件
示例:比如hdfs的目录 /aaa/下有多个文件:log.1, log.2,log.3,...
hadoop fs -getmerge /aaa/log.* ./log.sum
-put                
功能:等同于copyFromLocal
示例:hadoop  fs  -put  /aaa/jdk.tar.gz  /bbb/jdk.tar.gz.2

-rm                
功能:删除文件或文件夹
示例:hadoop fs -rm -r /aaa/bbb/

-rmdir                 
功能:删除空目录
示例:hadoop  fs  -rmdir   /aaa/bbb/ccc
-df               
功能:统计文件系统的可用空间信息
示例:hadoop  fs  -df  -h  /

-du
功能:统计文件夹的大小信息
示例:
hadoop  fs  -du  -s  -h /aaa/*

-count         
功能:统计一个指定目录下的文件节点数量
示例:hadoop fs -count /aaa/

-setrep                
功能:设置hdfs中文件的副本数量
示例:hadoop fs -setrep 3 /aaa/jdk.tar.gz
<这里设置的副本数只是记录在namenode的元数据中,是否真的会有这么多副本,还得看datanode的数量>

23:Hdfs的工作机制:

(工作机制的学习主要是为加深对分布式系统的理解,以及增强遇到各种问题时的分析解决能力,形成一定的集群运维能力)


  注意:很多不是真正理解hadoop技术体系的人会常常觉得HDFS可用于网盘类应用,但实际并非如此。要想将技术准确用在恰当的地方,必须对技术有深刻的理解

概述
  1:HDFS集群分为两大角色:NameNode、DataNode
  2:NameNode负责管理整个文件系统的元数据
  3DataNode 负责管理用户的文件数据块
  4文件会按照固定的大小(blocksize)切成若干块后分布式存储在若干台datanode上
  5每一个文件块可以有多个副本,并存放在不同的datanode上
  6Datanode会定期向Namenode汇报自身所保存的文件block信息,而namenode则会负责保持文件的副本数量
  7HDFS的内部工作机制对客户端保持透明,客户端请求访问HDFS都是通过向namenode申请来进行

 

待续......

目录
相关文章
|
3月前
|
存储 分布式计算 资源调度
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(一)
97 5
|
3月前
|
资源调度 数据可视化 大数据
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
大数据-04-Hadoop集群 集群群起 NameNode/DataNode启动 3台公网云 ResourceManager Yarn HDFS 集群启动 UI可视化查看 YarnUI(二)
42 4
|
3月前
|
分布式计算 负载均衡 算法
Hadoop-31 ZooKeeper 内部原理 简述Leader选举 ZAB协议 一致性
Hadoop-31 ZooKeeper 内部原理 简述Leader选举 ZAB协议 一致性
40 1
|
3月前
|
分布式计算 监控 Hadoop
Hadoop-29 ZooKeeper集群 Watcher机制 工作原理 与 ZK基本命令 测试集群效果 3台公网云服务器
Hadoop-29 ZooKeeper集群 Watcher机制 工作原理 与 ZK基本命令 测试集群效果 3台公网云服务器
56 1
|
3月前
|
分布式计算 Hadoop 网络安全
Hadoop-08-HDFS集群 基础知识 命令行上机实操 hadoop fs 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件
Hadoop-08-HDFS集群 基础知识 命令行上机实操 hadoop fs 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件
48 1
|
3月前
|
存储 机器学习/深度学习 缓存
Hadoop-07-HDFS集群 基础知识 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件
Hadoop-07-HDFS集群 基础知识 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件
64 1
|
3月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
206 6
|
3月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
91 2
|
17天前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
54 4
|
2月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
138 2

相关实验场景

更多