PHOG特征
2016年7月13日 21:07:57
什么是PHOG
PHOG是Pyramid HOG(pyramid histogram of oriented gradient)的简称,是在图像尺寸固定的情况下,计算不同尺度下的特征(这一点有点绕,是指要计算HOG特征的区块的划分尺度在变化),将这些特征进行拼接得到PHOG特征,在论文[1,2]中被提出和使用,用来做图像分类。
PHOG原理
具体来讲,HOG特征描述的是一个区域,它可以是一个cell大小,也可以是一个windows大小,anyway,ROI内逐像素计算梯度方向,然后按预设将所有角度等分为若干份,每个像素点的梯度方向就划归到特定角度范围内,那么统计直方图中就把它算到对应的“统计立柱(bin)”里面去,术语叫做“投票”,其投票权值是像素点的梯度幅值。逐像素操作后得到一个统计直方图,它可以用一个一维向量表示。我们可以把这个向量叫做HOG特征。需要计算PHOG特征的图像其尺寸是固定的,但要计算HOG特征则可以对这个图片有不同尺度的划分:第一层,只有1个区域;第二层:分为2x2个区域;第三层:分为4x4个区域;...。在同一划分尺度图里面,每个区域算出一个HOG特征,按顺序进行拼接,得到当前尺度图的HOG特征;所有尺度图的HOG特征进行拼接,得到整个图像空间尺度金字塔的PHOG特征。
怎么求PHOG
用伪代码表示一下:
Input:
win:某图像区域
bins: 梯度方向(角度值)要划分到几个区域,即180°或360°要等分的数目。通常取360°和8等分
L: 尺度金字塔要搞几层?通常取3。表示除了原图尺度外,另外再算3个“原有1/2尺度”图像的HOG特征
Output:
PHOG:尺度金字塔所有层的HOG特征的拼接
Algorighm:
function HOG(area){
%计算某区域area的HOG特征
逐像素计算梯度方向(角度值)
按等分方向数量,将梯度方向划归到不同的区间,进行统计
统计得到的直方图,是一个向量
}
function level_HOG(level){
%计算某层金字塔的HOG特征
将均等划分的若干个窗口,分别计算HOG特征
将这些HOG特征进行拼接
}
function PHOG(win){
%计算某区域win的尺度金字塔的PHOG特征
逐层计算win的尺度金字塔的HOG特征
将这些HOG特征进行拼接
}
PHOG的维度
PHOG作为HOG的变种,也是一个描述符,在代码实现中就是一个一维向量。那么PHOG描述符的长度是多少?即,PHOG这个向量有多少维?
L=3, n=8时:
第0层是整图算HOG,1x8维的HOG特征
第1层是2x2划分,2x2x8维的HOG特征
第2层是4x4划分,4x4x8维的HOG特征
第3层是8x8划分,8x8x8维的HOG特征
因此,此时的phog_dimension=(1+4+16+64)x8=680维
source code
http://www.robots.ox.ac.uk/~vgg/research/caltech/phog.html
ref
[1] Bosch, A. , Zisserman, A. and Munoz, X.
Representing shape with a spatial pyramid kernel
Proceedings of the International Conference on Image and Video Retrieval (2007)
[2] Bosch, A. , Zisserman, A. and Munoz, X.
Image Classification using Random Forests and Ferns
Proceedings of the 11th International Conference on Computer Vision, Rio de Janeiro, Brazil (2007)