MambaOut:状态空间模型并不适合图像的分类任务

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 该论文研究了Mamba架构(含状态空间模型SSM)在视觉任务(图像分类、目标检测、语义分割)中的必要性。实验表明,Mamba在这些任务中效果不如传统卷积和注意力模型。论文提出,SSM更适合长序列和自回归任务,而非视觉任务。MambaOut(不带SSM的门控CNN块)在图像分类上优于视觉Mamba,但在检测和分割任务中略逊一筹,暗示SSM在这类任务中可能仍有价值。研究还探讨了Mamba在处理长序列任务时的效率和局部信息整合能力。尽管整体表现一般,但论文为优化不同视觉任务的模型架构提供了新视角。

该论文探讨了Mamba架构(包含状态空间模型SSM)是否有必要用于视觉任务,如图像分类、目标检测和语义分割。通过实验证实了了Mamba在视觉识别任务中的效果,认为其不如传统的卷积和注意力模型。

论文理论化认为Mamba更适合具有长序列和自回归特性的任务,而这些特性大多数视觉任务不具备。并进行了一下的实验

  • 构建了一系列名为MambaOut的模型,使用了不带SSM的门控CNN块。
  • 将MambaOut的性能与视觉Mamba模型在ImageNet上的图像分类和COCO上的目标检测和分割任务进行比较。

实验结论如下:

对于图像分类任务,SSM是没有必要的,因为此任务不符合长序列或自回归特性。实验证据表明,MambaOut在图像分类上超越了视觉Mamba模型。

对于检测和分割任务,SSM可能有潜在的好处,因为这些任务符合长序列特性,尽管它们不是自回归的。MambaOut在这些任务中的表现不如最先进的视觉Mamba模型,支持了SSM在这些任务中仍有价值的假设。

我总结了论文主要阐述的三个问题:

1、论文认为SSM更适合长序列和自回归特性的任务

长序列特性:

  • RNN-like机制:SSM具备RNN-like(类RNN)机制,即通过固定大小的隐状态来存储历史信息。隐状态在每个时间步更新,但其大小保持不变,因此计算复杂度与序列长度无关。这使得SSM在处理长序列时非常高效。
  • 记忆合并效率:由于隐状态的固定大小,SSM能够在合并历史信息和当前输入时保持计算复杂度不变,不会随着序列长度的增加而显著增长。这与注意力机制不同,后者存储所有过去的键和值,并随着序列长度的增加,记忆合并的复杂度呈二次增长。

自回归特性:

  • 因果模式:SSM的递归特性使其只能访问前一个和当前时间步的信息,这种特性被称为因果模式(causal mode)。在因果模式下,每个时间步的输出仅依赖于当前及之前的输入。这非常适合自回归生成任务,其中每个令牌只能依赖于之前的令牌。
  • 因果约束的必要性:在自回归任务中,模型需要根据当前和之前的信息逐步生成输出,SSM的因果模式能够很好地满足这一需求。而对于理解任务(如视觉任务),模型可以一次性看到整个输入图像,不需要因果约束,因果模式反而会导致性能下降。

论文认为SSM适合长序列和自回归特性的任务,因为其高效的记忆合并机制和因果模式能够在这些任务中发挥优势。而视觉任务大多不具备这两个特性,因此SSM在这些任务中表现不佳。

2、MambaOut在图像分类上的性能以及研究意义

实验结果表明,MambaOut在ImageNet图像分类任务中表现优异,超越了包含SSM的视觉Mamba模型。例如,MambaOut模型在不同大小的参数配置下均表现出色,尤其是在ImageNet上的Top-1准确率显著提高。

MambaOut-Small模型的Top-1准确率达到了84.1%,比LocalVMamba-S高出0.4%,同时仅需要79%的MACs(乘法累加操作)。

在多种模型规模下,MambaOut模型都能超越视觉Mamba模型,证明了其在图像分类任务中的有效性。

  1. 实验证明SSM在图像分类任务中是没有必要的。图像分类任务不符合长序列或自回归特性,因此去掉SSM的MambaOut模型能够在性能上超越包含SSM的视觉Mamba模型。
  2. MambaOut采用了更简单的架构(去除了SSM),根据奥卡姆剃刀原则,简单的模型如果能提供相同或更好的性能,则更为优越。这意味着未来的视觉任务研究可以优先考虑不包含SSM的简化模型。
  3. 去除SSM后的MambaOut模型在计算复杂度和效率上都有提升。固定大小的隐状态减少了内存需求和计算开销,使得模型在实际应用中更加高效和可扩展。
  4. MambaOut因为其简洁且高效的设计,可以作为未来视觉任务研究中的基线模型,帮助研究人员在更简化的模型架构上进行优化和改进。

总结来说,MambaOut在图像分类任务中的优异表现不仅验证了SSM在此类任务中的不必要性,还提供了一个高效、简洁的模型架构,为未来的研究工作奠定了基础。

3、Mamba在检测和分割任务中的潜力

长序列特性

  • 检测和分割任务通常处理更大尺寸的图像(例如COCO和ADE20K数据集),这些任务涉及的序列长度较长,符合Mamba模型处理长序列的优势。
  • Mamba的高效内存合并机制可以在长序列任务中保持计算复杂度恒定,从而提高处理效率。

局部信息整合

  • 尽管视觉任务不是自回归的,但检测和分割任务可以从Mamba的因果模式中受益,通过局部信息的逐步整合,有助于更细致的目标识别和区域分割。
  • Mamba的选择性状态空间模型(SSM)能够在处理长序列时有效地保持和传递局部信息,有助于提升模型的表现。

4、可以进行的额外研究来验证这一点

改进现有的Mamba模型:

  • 局部Mamba:增强Mamba模型的局部感受野,例如LocalMamba,通过引入窗口选择性扫描来提升局部信息处理能力。
  • 混合模型:将Mamba与其他先进的模型架构(如卷积和注意力机制)相结合,构建混合模型,以便充分利用各自的优势。

更大规模的数据集实验:

  • 在更多且更大规模的数据集上测试Mamba模型,如Cityscapes、Pascal VOC等,验证其在不同数据分布和任务复杂度下的表现。进行跨数据集的迁移学习实验,评估Mamba在不同视觉任务中的通用性和适应性。

优化模型训练策略:

  • 探索更有效的训练策略,例如多任务学习,将图像分类、目标检测和语义分割结合在一个统一的训练框架中,以充分挖掘Mamba模型的潜力。引入自监督学习和迁移学习技术,通过在无标签数据上预训练Mamba模型,提升其在有限标签数据上的表现。

更细致的模型分析:

  • 通过可视化工具和解释性技术,深入分析Mamba模型在检测和分割任务中的决策过程,理解其内在机制和优势。对比不同任务和数据集下Mamba模型的性能瓶颈,针对性地进行架构改进和优化。

通过上述研究方向,可以更全面地验证Mamba在改进检测和分割任务方面的潜力,并进一步提升其在实际应用中的表现。

尽管Mamba架构在视觉任务中的整体表现并不突出,但作者通过去除其核心组件SSM构建的MambaOut模型在特定任务中显示出了潜力。这一发现表明,对于不同的视觉任务,可能需要考虑使用不同的架构或模型组件来优化性能。此外,对于具有长序列特性的视觉任务,如检测和分割,进一步探索Mamba的潜力可能是一个值得研究的方向。

八卦:

我个人认为这是一篇论非常好的论文,不仅论述证明了观点,而且这个观点在以往中也是经常被讨论的,其实就是我们以前的bert和gpt的遮蔽(嵌入)模型和因果模型在应用方面的区别。论文通过另外的一种方式来证明了这个而观点,给出了详细的代码,非常容易懂,并且也对比了分类,分割和检测任务的区别,有研究这个方向的可以以这篇论文的思路进行优化。

但是问题就来了,这个名字起的就让网友们开始发挥了,你要知道在全球最大的同性交友网站发这种谐音梗的后果是什么呢,那么请看这个代码的issues吧,非常好的一篇论文就被整的不那么正经了。

https://avoid.overfit.cn/post/fb3bd5f87003447bba430ca6ba2552bc

目录
相关文章
|
8月前
|
机器学习/深度学习 自然语言处理 数据可视化
深度探索变分自编码器在无监督特征学习中的应用
【4月更文挑战第20天】 在深度学习领域,无监督学习一直是研究的热点问题之一。本文聚焦于一种前沿的生成模型——变分自编码器(Variational Autoencoder, VAE),探讨其在无监督特征学习中的关键作用与应用潜力。不同于传统的摘要形式,本文将直接深入VAE的核心机制,分析其如何通过引入随机隐变量和重参数化技巧,实现对复杂数据分布的有效建模。文章还将展示VAE在多个实际数据集上的应用结果,验证其作为无监督特征提取工具的有效性和普适性。通过理论与实践的结合,本文旨在为读者提供关于VAE在无监督特征学习领域的全面认识。
|
8月前
|
机器学习/深度学习 算法 数据库
KNN和SVM实现对LFW人像图像数据集的分类应用
KNN和SVM实现对LFW人像图像数据集的分类应用
119 0
|
3月前
|
机器学习/深度学习 调度 知识图谱
TimeDART:基于扩散自回归Transformer 的自监督时间序列预测方法
近年来,深度神经网络成为时间序列预测的主流方法。自监督学习通过从未标记数据中学习,能够捕获时间序列的长期依赖和局部特征。TimeDART结合扩散模型和自回归建模,创新性地解决了时间序列预测中的关键挑战,在多个数据集上取得了最优性能,展示了强大的泛化能力。
126 0
TimeDART:基于扩散自回归Transformer 的自监督时间序列预测方法
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
基于Mamba架构的,状态空间音频分类模型AUM
【8月更文挑战第7天】随着AI技术的发展,音频分类在诸多领域变得至关重要。传统方法如CNN面临计算成本高的问题。新兴的Mamba架构,基于状态空间模型(SSM),展示出优秀性能。受此启发,研究者开发了Audio Mamba (AUM)模型,首个完全基于SSM且不依赖自注意力机制的音频分类模型。AUM利用SSM的高效性捕捉音频时频特征,大幅降低计算复杂度,尤其适合大规模数据。实验显示,AUM在多个任务上的表现与先进自注意力模型相当甚至更好。尽管如此,AUM在复杂任务及泛化能力方面仍存在讨论空间。[论文](https://arxiv.org/abs/2406.03344)
103 1
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
论文介绍:探索离散状态空间中的去噪扩散模型
【4月更文挑战第8天】新研究提出离散去噪扩散概率模型(D3PMs),扩展了在图像和音频生成上成功的DDPMs,专注于离散数据如文本和图像分割。D3PMs通过结构化的离散腐败过程改进生成质量,无需将数据转化为连续空间,允许嵌入领域知识。实验显示,D3PMs在字符级文本生成和CIFAR-10图像数据集上表现出色。尽管有局限性,如在某些任务上不及自回归模型,D3PMs的灵活性使其适用于多样化场景。
94 2
论文介绍:探索离散状态空间中的去噪扩散模型
|
8月前
|
机器学习/深度学习 XML 编解码
ENVI实现最小距离法、最大似然法、支持向量机遥感图像监督分类与分类后处理操作
ENVI实现最小距离法、最大似然法、支持向量机遥感图像监督分类与分类后处理操作
343 1
|
8月前
|
机器学习/深度学习 算法 PyTorch
实战图像softmax分类模型
本文是学习softmax图像分类模型的总结,主要分享softmax图像分类模型的技术原理,以及用代码实现验证,供大家参考。
316 3
|
机器学习/深度学习 传感器 算法
基于监督学习的多模态MRI脑肿瘤分割,使用来自超体素的纹理特征(Matlab代码实现)
基于监督学习的多模态MRI脑肿瘤分割,使用来自超体素的纹理特征(Matlab代码实现)
|
机器学习/深度学习 存储 数据采集
使用深度神经网络对肿瘤图像进行分类
使用 Inception-v3 深度神经网络对可能不适合内存的多分辨率全玻片图像 (WSI) 进行分类。 用于肿瘤分类的深度学习方法依赖于数字病理学,其中整个组织切片被成像和数字化。生成的 WSI 具有高分辨率,大约为 200,000 x 100,000 像素。WSI 通常以多分辨率格式存储,以促进图像的高效显示、导航和处理。
176 0
|
存储 机器学习/深度学习 编解码
使用训练分类网络预处理多分辨率图像
说明如何准备用于读取和预处理可能不适合内存的多分辨率全玻片图像 (WSI) 的数据存储。肿瘤分类的深度学习方法依赖于数字病理学,其中整个组织切片被成像和数字化。生成的 WSI 具有高分辨率,大约为 200,000 x 100,000 像素。WSI 通常以多分辨率格式存储,以促进图像的高效显示、导航和处理。 读取和处理WSI数据。这些对象有助于使用多个分辨率级别,并且不需要将图像加载到核心内存中。此示例演示如何使用较低分辨率的图像数据从较精细的级别有效地准备数据。可以使用处理后的数据来训练分类深度学习网络。
373 0