径向基(RBF)神经网络python实现

简介: 1 from numpy import array, append, vstack, transpose, reshape, \ 2 dot, true_divide, mean, exp, sqrt, log, \ 3 ...

 

  1 from numpy import array, append, vstack, transpose, reshape, \
  2                   dot, true_divide, mean, exp, sqrt, log, \
  3                   loadtxt, savetxt, zeros, frombuffer
  4 from numpy.linalg import norm, lstsq
  5 from multiprocessing import Process, Array
  6 from random import sample
  7 from time import time
  8 from sys import stdout
  9 from ctypes import c_double
 10 from h5py import File
 11 
 12 
 13 def metrics(a, b): 
 14     return norm(a - b)
 15 
 16 
 17 def gaussian (x, mu, sigma): 
 18     return exp(- metrics(mu, x)**2 / (2 * sigma**2))
 19 
 20 
 21 def multiQuadric (x, mu, sigma):
 22     return pow(metrics(mu,x)**2 + sigma**2, 0.5)
 23 
 24 
 25 def invMultiQuadric (x, mu, sigma):
 26     return pow(metrics(mu,x)**2 + sigma**2, -0.5)
 27 
 28 
 29 def plateSpine (x,mu):
 30     r = metrics(mu,x)
 31     return (r**2) * log(r)
 32 
 33 
 34 class Rbf:
 35     def __init__(self, prefix = 'rbf', workers = 4, extra_neurons = 0, from_files = None):
 36         self.prefix = prefix
 37         self.workers = workers
 38         self.extra_neurons = extra_neurons
 39 
 40         # Import partial model
 41         if from_files is not None:            
 42             w_handle = self.w_handle = File(from_files['w'], 'r')
 43             mu_handle = self.mu_handle = File(from_files['mu'], 'r')
 44             sigma_handle = self.sigma_handle = File(from_files['sigma'], 'r')
 45             
 46             self.w = w_handle['w']
 47             self.mu = mu_handle['mu']
 48             self.sigmas = sigma_handle['sigmas']
 49             
 50             self.neurons = self.sigmas.shape[0]
 51 
 52     def _calculate_error(self, y):
 53         self.error = mean(abs(self.os - y))
 54         self.relative_error = true_divide(self.error, mean(y))
 55 
 56     def _generate_mu(self, x):
 57         n = self.n
 58         extra_neurons = self.extra_neurons
 59 
 60         # TODO: Make reusable
 61         mu_clusters = loadtxt('clusters100.txt', delimiter='\t')
 62 
 63         mu_indices = sample(range(n), extra_neurons)
 64         mu_new = x[mu_indices, :]
 65         mu = vstack((mu_clusters, mu_new))
 66 
 67         return mu
 68 
 69     def _calculate_sigmas(self):
 70         neurons = self.neurons
 71         mu = self.mu
 72 
 73         sigmas = zeros((neurons, ))
 74         for i in xrange(neurons):
 75             dists = [0 for _ in xrange(neurons)]
 76             for j in xrange(neurons):
 77                 if i != j:
 78                     dists[j] = metrics(mu[i], mu[j])
 79             sigmas[i] = mean(dists)* 2
 80                       # max(dists) / sqrt(neurons * 2))
 81         return sigmas
 82 
 83     def _calculate_phi(self, x):
 84         C = self.workers
 85         neurons = self.neurons
 86         mu = self.mu
 87         sigmas = self.sigmas
 88         phi = self.phi = None
 89         n = self.n
 90 
 91 
 92         def heavy_lifting(c, phi):
 93             s = jobs[c][1] - jobs[c][0]
 94             for k, i in enumerate(xrange(jobs[c][0], jobs[c][1])):
 95                 for j in xrange(neurons):
 96                     # phi[i, j] = metrics(x[i,:], mu[j])**3)
 97                     # phi[i, j] = plateSpine(x[i,:], mu[j]))
 98                     # phi[i, j] = invMultiQuadric(x[i,:], mu[j], sigmas[j]))
 99                     phi[i, j] = multiQuadric(x[i,:], mu[j], sigmas[j])
100                     # phi[i, j] = gaussian(x[i,:], mu[j], sigmas[j]))
101                 if k % 1000 == 0:
102                     percent = true_divide(k, s)*100
103                     print(c, ': {:2.2f}%'.format(percent))
104             print(c, ': Done')
105         
106         # distributing the work between 4 workers
107         shared_array = Array(c_double, n * neurons)
108         phi = frombuffer(shared_array.get_obj())
109         phi = phi.reshape((n, neurons))
110 
111         jobs = []
112         workers = []
113 
114         p = n / C
115         m = n % C
116         for c in range(C):
117             jobs.append((c*p, (c+1)*p + (m if c == C-1 else 0)))
118             worker = Process(target = heavy_lifting, args = (c, phi))
119             workers.append(worker)
120             worker.start()
121 
122         for worker in workers:
123             worker.join()
124 
125         return phi
126 
127     def _do_algebra(self, y):
128         phi = self.phi
129 
130         w = lstsq(phi, y)[0]
131         os = dot(w, transpose(phi))
132         return w, os
133         # Saving to HDF5
134         os_h5 = os_handle.create_dataset('os', data = os)
135 
136     def train(self, x, y):
137         self.n = x.shape[0]
138 
139         ## Initialize HDF5 caches
140         prefix = self.prefix
141         postfix = str(self.n) + '-' + str(self.extra_neurons) + '.hdf5'
142         name_template = prefix + '-{}-' + postfix
143         phi_handle = self.phi_handle = File(name_template.format('phi'), 'w')
144         os_handle = self.w_handle = File(name_template.format('os'), 'w')
145         w_handle = self.w_handle = File(name_template.format('w'), 'w')
146         mu_handle = self.mu_handle = File(name_template.format('mu'), 'w')
147         sigma_handle = self.sigma_handle = File(name_template.format('sigma'), 'w')
148 
149         ## Mu generation
150         mu = self.mu = self._generate_mu(x)
151         self.neurons = mu.shape[0]
152         print('({} neurons)'.format(self.neurons))
153         # Save to HDF5
154         mu_h5 = mu_handle.create_dataset('mu', data = mu)
155 
156         ## Sigma calculation
157         print('Calculating Sigma...')
158         sigmas = self.sigmas = self._calculate_sigmas()
159         # Save to HDF5
160         sigmas_h5 = sigma_handle.create_dataset('sigmas', data = sigmas)
161         print('Done')
162 
163         ## Phi calculation
164         print('Calculating Phi...')
165         phi = self.phi = self._calculate_phi(x)
166         print('Done')
167         # Saving to HDF5
168         print('Serializing...')
169         phi_h5 = phi_handle.create_dataset('phi', data = phi)
170         del phi
171         self.phi = phi_h5
172         print('Done')
173 
174         ## Algebra
175         print('Doing final algebra...')
176         w, os = self.w, _ = self._do_algebra(y)
177         # Saving to HDF5
178         w_h5 = w_handle.create_dataset('w', data = w)
179         os_h5 = os_handle.create_dataset('os', data = os)
180 
181         ## Calculate error
182         self._calculate_error(y)
183         print('Done')
184 
185     def predict(self, test_data):
186         mu = self.mu = self.mu.value
187         sigmas = self.sigmas = self.sigmas.value
188         w = self.w = self.w.value
189 
190         print('Calculating phi for test data...')
191         phi = self._calculate_phi(test_data)
192         os = dot(w, transpose(phi))
193         savetxt('iok3834.txt', os, delimiter='\n')
194         return os
195 
196     @property
197     def summary(self):
198         return '\n'.join( \
199             ['-----------------',
200             'Training set size: {}'.format(self.n),
201             'Hidden layer size: {}'.format(self.neurons),
202             '-----------------',
203             'Absolute error   : {:02.2f}'.format(self.error),
204             'Relative error   : {:02.2f}%'.format(self.relative_error * 100)])
205 
206 
207 def predict(test_data):
208     mu = File('rbf-mu-212243-2400.hdf5', 'r')['mu'].value
209     sigmas = File('rbf-sigma-212243-2400.hdf5', 'r')['sigmas'].value
210     w = File('rbf-w-212243-2400.hdf5', 'r')['w'].value
211 
212     n = test_data.shape[0]  
213     neur = mu.shape[0]  
214     
215     mu = transpose(mu)
216     mu.reshape((n, neur))   
217 
218     phi = zeros((n, neur)) 
219     for i in range(n):
220         for j in range(neur):
221             phi[i, j] = multiQuadric(test_data[i,:], mu[j], sigmas[j])
222 
223     os = dot(w, transpose(phi))
224     savetxt('iok3834.txt', os, delimiter='\n')
225     return os

 

目录
相关文章
|
2月前
|
机器学习/深度学习 算法 PyTorch
python手把手搭建图像多分类神经网络-代码教程(手动搭建残差网络、mobileNET)
python手把手搭建图像多分类神经网络-代码教程(手动搭建残差网络、mobileNET)
46 0
|
3月前
|
机器学习/深度学习 算法 TensorFlow
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
57 0
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
|
1天前
|
机器学习/深度学习 Python
Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析
Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析
11 0
|
2天前
|
机器学习/深度学习 存储 测试技术
使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测
使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测
|
3天前
|
机器学习/深度学习 资源调度 数据可视化
使用Python和Keras进行主成分分析、神经网络构建图像重建
使用Python和Keras进行主成分分析、神经网络构建图像重建
|
1月前
|
机器学习/深度学习 算法框架/工具 Python
如何使用Python的Keras库构建神经网络模型?
如何使用Python的Keras库构建神经网络模型?
8 0
|
1月前
|
机器学习/深度学习 PyTorch TensorFlow
python实现深度学习模型(如:卷积神经网络)。
【2月更文挑战第14天】【2月更文挑战第38篇】实现深度学习模型(如:卷积神经网络)。
|
1月前
|
机器学习/深度学习 Python
神经网络回归案例(python
神经网络回归案例(python
24 0
|
2月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习入门:Python 与神经网络
深度学习是机器学习的一个分支,它涉及使用多层神经网络来处理和学习数据。在 Python 中,有许多流行的深度学习库和框架可以帮助我们轻松地构建和训练神经网络模型。在本文中,我们将介绍深度学习的基本概念,并使用 Python 中的 TensorFlow 和 Keras 库来构建一个简单的神经网络模型。
|
2月前
|
机器学习/深度学习 算法 TensorFlow
基于 Python中的深度学习:神经网络与卷积神经网络
基于 Python中的深度学习:神经网络与卷积神经网络