神经网络对比

简介: 1. 只能分两类 层数固定不变层数可以变化 ''' 11行神经网络① 固定三层,两类 ''' # 只适合 0, 1 两类。若不是,要先转化 import numpy as np X = np.

 

1. 只能分两类

层数固定不变 层数可以变化
''' 
11行神经网络①  
固定三层,两类
'''
# 只适合 0, 1 两类。若不是,要先转化
import numpy as np

X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])
y = np.array([0,1,1,0]).reshape(-1,1) # 此处reshape是为了便于算法简洁实现

wi = 2*np.random.randn(3,5) - 1
wh = 2*np.random.randn(5,1) - 1

for j in range(10000):
    li = X
    lh = 1/(1+np.exp(-(np.dot(li,wi))))
    lo = 1/(1+np.exp(-(np.dot(lh,wh))))
    
    lo_delta = (y - lo)*(lo*(1-lo))
    lh_delta = np.dot(lo_delta, wh.T) * (lh * (1-lh))
    
    wh += np.dot(lh.T, lo_delta)
    wi += np.dot(li.T, lh_delta)
    
print('训练结果:', lo)
'''
11行神经网络① 
层数可变,两类
'''
# 只适合 0, 1 两类。若不是,要先转化
import numpy as np

X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])
y = np.array([0,1,1,0]).reshape(-1,1) # 此处reshape是为了便于算法简洁实现

neurals = [3,15,1]
w
= [np.random.randn(i,j) for i,j in zip(neurals[:-1], neurals[1:])] + [None] l = [None] * len(neurals) l_delta = [None] * len(neurals) for j in range(1000): l[0] = X for i in range(1, len(neurals)): l[i] = 1 / (1 + np.exp(-(np.dot(l[i-1], w[i-1])))) l_delta[-1] = (y - l[-1]) * (l[-1] * (1 - l[-1])) for i in range(len(neurals)-2, 0, -1): l_delta[i] = np.dot(l_delta[i+1], w[i].T) * (l[i] * (1 - l[i])) for i in range(len(neurals)-2, -1, -1): w[i] += np.dot(l[i].T, l_delta[i+1]) print('训练结果:', l[-1])

 

 

2.可以分多类

层数固定不变 层数可以变化
'''
11行神经网络① 
固定三层,多类
'''
import numpy as np

X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])
#y = np.array([0,1,1,0]) # 可以两类
y = np.array([0,1,2,3])  # 可以多类

wi = np.random.randn(3,5)
wh = np.random.randn(5,4) #
bh = np.random.randn(1,5)
bo = np.random.randn(1,4) #

epsilon = 0.01    # 学习速率
lamda = 0.01      # 正则化强度

for j in range(1000):
    li = X
    lh = np.tanh(np.dot(li, wi) + bh)     # tanh 函数
    lo = np.exp(np.dot(lh, wh) + bo)
    probs = lo / np.sum(lo, axis=1, keepdims=True)

    # 后向传播
    lo_delta = np.copy(probs)
    lo_delta[range(X.shape[0]), y] -= 1
    lh_delta = np.dot(lo_delta, wh.T) * (1 - np.power(lh, 2)) 

    # 更新权值、偏置
    wh -= epsilon * (np.dot(lh.T, lo_delta) + lamda * wh)
    wi -= epsilon * (np.dot(li.T, lh_delta) + lamda * wi)
    
    bo -= epsilon * np.sum(lo_delta, axis=0, keepdims=True)
    bh -= epsilon * np.sum(lh_delta, axis=0)
    
print('训练结果:', np.argmax(probs, axis=1))

 

'''
11行神经网络① 
层数可变,多类
'''
import numpy as np

X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])
#y = np.array([0,1,1,0]) # 可以两类
y = np.array([0,1,2,3])  # 可以多类

neurals = [3, 10, 8, 4]
w
= [np.random.randn(i,j) for i,j in zip(neurals[:-1], neurals[1:])] + [None] b = [None] + [np.random.randn(1,j) for j in neurals[1:]] l = [None] * len(neurals) l_delta = [None] * len(neurals) epsilon = 0.01 # 学习速率 lamda = 0.01 # 正则化强度 for j in range(1000): # 前向传播 l[0] = X for i in range(1, len(neurals)-1): l[i] = np.tanh(np.dot(l[i-1], w[i-1]) + b[i]) # tanh 函数 l[-1] = np.exp(np.dot(l[-2], w[-2]) + b[-1]) probs = l[-1] / np.sum(l[-1], axis=1, keepdims=True) # 后向传播 l_delta[-1] = np.copy(probs) l_delta[-1][range(X.shape[0]), y] -= 1 for i in range(len(neurals)-2, 0, -1): l_delta[i] = np.dot(l_delta[i+1], w[i].T) * (1 - np.power(l[i], 2)) # tanh 函数的导数 # 更新权值、偏置 b[-1] -= epsilon * np.sum(l_delta[-1], axis=0, keepdims=True) for i in range(len(neurals)-2, -1, -1): w[i] -= epsilon * (np.dot(l[i].T, l_delta[i+1]) + lamda * w[i]) if i == 0: break b[i] -= epsilon * np.sum(l_delta[i], axis=0) # 打印损失 if j % 100 == 0: loss = np.sum(-np.log(probs[range(X.shape[0]), y])) loss += lamda/2 * np.sum([np.sum(np.square(wi)) for wi in w[:-1]]) # 可选 loss *= 1/X.shape[0] # 可选 print('loss:', loss) print('训练结果:', np.argmax(probs, axis=1))

 

 

目录
相关文章
|
数据采集 数据可视化 数据挖掘
数据分析案例-BI工程师招聘岗位信息可视化分析
数据分析案例-BI工程师招聘岗位信息可视化分析
366 0
|
编解码 算法 搜索推荐
淘宝人生里的虚拟人像渲染技术
全程干货,淘宝人生里的虚拟人像是如何实现的?
淘宝人生里的虚拟人像渲染技术
高德地图目前是哪个集团下的公司?
其实在2014年02月,阿里巴巴就斥资11亿美元,完成对高德地图的全资收购,所以高德地图目前是属于阿里巴巴集团下的公司了。
3382 0
|
存储 前端开发 JavaScript
深入理解React Fiber架构及其性能优化
【10月更文挑战第5天】深入理解React Fiber架构及其性能优化
448 1
|
9月前
|
人工智能 自然语言处理 安全
《方舟编译器——开启人工智能编译优化新篇章》
鸿蒙系统的方舟编译器在人工智能领域展现出显著优势,通过多语言联合编译优化、静态编译提升效率和硬件适配指令集优化,大幅加快模型训练速度。在应用方面,它支持分布式协同、优化内存管理和增强安全性能,保障数据隐私。这些特性不仅提升了AI模型的训练和应用效率,还推动了人工智能技术的广泛应用和发展。
442 14
|
10月前
|
存储 人工智能 项目管理
提升企业竞争力的关键:探索多人协同办公的优势与挑战
本文介绍了多人协同办公的背景、工具及优势。随着全球化和技术的发展,远程办公和跨区域协作成为趋势,企业依赖云计算、大数据等技术实现高效团队协作。文章详细介绍了云协作平台、即时通讯工具、项目管理工具和文件共享工具,并探讨了多人协同办公在提升工作效率、跨地域协作、促进创新和增强团队透明度等方面的优势。最后,展望了未来多人协同办公的创新方向,包括人工智能、虚拟现实和工具深度集成等。
|
10月前
|
机器学习/深度学习 人工智能 前端开发
【AI系统】AI编译器前瞻
本文基于《The Deep Learning Compiler: A Comprehensive Survey》调研,对比了TVM、nGraph、TC、Glow和XLA五个热门AI编译器,介绍了它们的特点和应用场景。文章分析了AI编译器面临的挑战,包括动态Shape问题、Python编译静态化、发挥硬件性能、特殊优化方法及易用性与性能兼顾问题,并展望了AI编译器的未来,探讨了编译器形态、IR形态、自动并行、自动微分及Kernel 自动生成等方面的发展趋势。
391 1
|
11月前
|
Web App开发 编解码 监控
直播协议
【10月更文挑战第26天】不同的直播协议具有不同的特点和应用场景。在选择直播协议时,需要根据直播的需求、目标受众、网络环境等因素进行综合考虑,以选择最适合的直播协议,确保直播的流畅性、稳定性和高质量。
|
SQL 缓存 关系型数据库
MySQL(三)SQL优化、Buffer pool、Change buffer
MySQL(三)SQL优化、Buffer pool、Change buffer
348 0
|
分布式计算 数据可视化 Hadoop
阿里云大数据ACA及ACP复习题(401~410)
本人备考阿里云大数据考试时自行收集准备的题库,纯手工整理的,能够覆盖到今年7月份,应该是目前最新的,发成文章希望大家能一起学习,不要花冤枉钱去买题库背了,也希望大家能够顺利通关ACA和ACP考试(自己整理解析也需要时间,可能有更新不及时的情况哈)