神经网络4

简介: 与单层神经网络不同。理论证明,两层神经网络可以无限逼近任意连续函数。这是什么意思呢?也就是说,面对复杂的非线性分类任务,两层(带一个隐藏层)神经网络可以分类的很好。下面就是一个例子(此两图来自colah的博客),红色的线与蓝色的线代表数据。而红色区域和蓝色区域代表由神经网络划开的区域,两者的分界线就是决策分界。可以看到,这个两层神经网络的决策分界是非常平滑的曲线,而且分类的很好。有趣的是,前面已经学到过,单层网络只能做线性分类任务。而两层神经网络中的后一层也是线性分类层,应该只能做线性分类任务。为什么两个线性分类任务结合就可以做非线性分类任务?我们可以把输出层的决策分界单独拿出来看一下

3.效果

与单层神经网络不同。理论证明,两层神经网络可以无限逼近任意连续函数。

这是什么意思呢?也就是说,面对复杂的非线性分类任务,两层(带一个隐藏层)神经网络可以分类的很好。

下面就是一个例子(此两图来自colah的博客),红色的线与蓝色的线代表数据。而红色区域和蓝色区域代表由神经网络划开的区域,两者的分界线就是决策分界。

image.png

可以看到,这个两层神经网络的决策分界是非常平滑的曲线,而且分类的很好。有趣的是,前面已经学到过,单层网络只能做线性分类任务。而两层神经网络中的后一层也是线性分类层,应该只能做线性分类任务。为什么两个线性分类任务结合就可以做非线性分类任务?

我们可以把输出层的决策分界单独拿出来看一下。就是下图。

image.png

可以看到,输出层的决策分界仍然是直线。关键就是,从输入层到隐藏层时,数据发生了空间变换。也就是说,两层神经网络中,隐藏层对原始的数据进行了一个空间变换,使其可以被线性分类,然后输出层的决策分界划出了一个线性分类分界线,对其进行分类。

这样就导出了两层神经网络可以做非线性分类的关键--隐藏层。联想到我们一开始推导出的矩阵公式,我们知道,矩阵和向量相乘,本质上就是对向量的坐标空间进行一个变换。因此,隐藏层的参数矩阵的作用就是使得数据的原始坐标空间从线性不可分,转换成了线性可分。

两层神经网络通过两层的线性模型模拟了数据内真实的非线性函数。因此,多层的神经网络的本质就是复杂函数拟合。

下面来讨论一下隐藏层的节点数设计。在设计一个神经网络时,输入层的节点数需要与特征的维度匹配,输出层的节点数要与目标的维度匹配。而中间层的节点数,却是由设计者指定的。因此,“自由”把握在设计者的手中。但是,节点数设置的多少,却会影响到整个模型的效果。如何决定这个自由层的节点数呢?目前业界没有完善的理论来指导这个决策。一般是根据经验来设置。较好的方法就是预先设定几个可选值,通过切换这几个值来看整个模型的预测效果,选择效果最好的值作为最终选择。这种方法又叫做Grid Search(网格搜索)。

了解了两层神经网络的结构以后,我们就可以看懂其它类似的结构图。例如EasyPR字符识别网络架构

image.png

EasyPR使用了字符的图像去进行字符文字的识别。输入是120维的向量。输出是要预测的文字类别,共有65类。根据实验,我们测试了一些隐藏层数目,发现当值为40时,整个网络在测试集上的效果较好,因此选择网络的最终结构就是120,40,65。

目录
相关文章
|
机器学习/深度学习 数据可视化
|
2月前
|
机器学习/深度学习 人工智能 算法
训练神经网络的7个技巧
训练神经网络的7个技巧
41 1
|
7月前
|
机器学习/深度学习 存储 人工智能
神经网络
3.效果 与神经元模型不同,感知器中的权值是通过训练得到的。因此,根据以前的知识我们知道,感知器类似一个逻辑回归模型,可以做线性分类任务。 我们可以用决策分界来形象的表达分类的效果。决策分界就是在二维的数据平面中划出一条直线,当数据的维度是3维的时候,就是划出一个平面,当数据的维度是n维时,就是划出一个n-1维的超平面。 下图显示了在二维平面中划出决策分界的效果,也就是感知器的分类效果。 4.影响 感知器只能做简单的线性分类任务。但是当时的人们热情太过于高涨,并没有人清醒的认识到这点。于是,当人工智能领域的巨擘Minsky指出这点时,事态就发生了变化。 Minsky在1969年出版了一本叫
56 0
|
7月前
|
机器学习/深度学习 算法 自动驾驶
神经网络5
4.训练 下面简单介绍一下两层神经网络的训练。 在Rosenblat提出的感知器模型中,模型中的参数可以被训练,但是使用的方法较为简单,并没有使用目前机器学习中通用的方法,这导致其扩展性与适用性非常有限。从两层神经网络开始,神经网络的研究人员开始使用机器学习相关的技术进行神经网络的训练。例如用大量的数据(1000-10000左右),使用算法进行优化等等,从而使得模型训练可以获得性能与数据利用上的双重优势。 机器学习模型训练的目的,就是使得参数尽可能的与真实的模型逼近。具体做法是这样的。首先给所有参数赋上随机值。我们使用这些随机生成的参数值,来预测训练数据中的样本。样本的预测目标为yp,真实目标
43 0
|
9月前
|
机器学习/深度学习 算法 PyTorch
神经网络知识蒸馏
翻译:《Distilling the knowledge in a neural network》
|
9月前
|
机器学习/深度学习 自然语言处理 算法
简单了解神经网络
神经网络是一种强大的机器学习算法,具有很广泛的应用,可以用于图像识别、语音识别、自然语言处理、推荐系统等多个领域。
67 0
|
机器学习/深度学习 存储 算法
一文让你掌握22个神经网络训练技巧
一文让你掌握22个神经网络训练技巧
一文让你掌握22个神经网络训练技巧
|
12月前
|
机器学习/深度学习 算法
连载|神经网络(下)
连载|神经网络(下)
|
12月前
|
机器学习/深度学习 算法
连载|神经网络(上)
连载|神经网络(上)
|
机器学习/深度学习
三、深层神经网络
三、深层神经网络
三、深层神经网络

相关实验场景

更多