基于python从redmine-api中获取项目缺陷数据(1)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 1.引言本文主要内容是将如何利用 Python 对 Redmine缺陷进行缺陷数据获取操作。目前统计缺陷数据时基本是根据项目手动去redmine获取缺陷数据,至少要花费一个工作日去完成,目前的目标是通过python脚本通过 Redmine-API快速去获取各个维度的缺陷数据...

1.引言

本文主要内容是将如何利用 Python 对 Redmine缺陷进行缺陷数据获取操作。目前统计缺陷数据时基本是根据项目手动去redmine获取缺陷数据,至少要花费一个工作日去完成,目前的目标是通过python脚本通过 Redmine-API快速去获取各个维度的缺陷数据

需求:

需要输出 产品质量数据(总BUG数,每日新建bug数,每日关闭bug数,bug修复周期,bug提交者统计、bug严重程度比)

实现方案:

1.redmine API形式发布不同维度的缺陷数据统计接口
2.采用python调用api接口,获取缺陷数据,并存储在数据库

2.必备环境

Python3
pycharm IDE
mysql
自行安装Python需要的包
redminelib
datetime
json
pandas
charts

3.redmine-api理解

了解各个字段代表的含义,比如新建BUG、关闭BUG,优先级、作者,引入者、BUG状态等字段的定义及获取

4.基于python编码-获取缺陷数据

引入必须的python库及包

#coding=utf-8
#引入所需要的库
from redminelib import Redmine
from pandas import DataFrame;
from string import punctuation
import datetime
import time
import matplotlib
import charts
from mysql_save import Bugcount
import json

定义函数
由于篇幅有限及涉及项目业务,这里只摘抄一部分关键代码

首先定义函数
def __init__(self, userName, passWord):
        self.userName = userName
        self.passWord = passWord
        self.redMineURL = 'http://10.20.11.218:8222/redmine'
        try:
            self.redmine = Redmine(self.redMineURL, username=self.userName, password=self.passWord)
            self.project = self.redmine.project.get('f_project')
        except Exception as ex:
            raise RuntimeError('无法连接到Redmine,请检查网络!\n'+ str(ex))
        self.fields = None


#新建BUG数定义筛选
def creat_list(created_on,subject):
    redmine = MyRedMine("zhangmeiyuan656", "password")
    issues1 = redmine.redmine.issue.filter(
        project_id='f_project',
        created_on='><'+str(created_on)+'|'+str(created_on),
        #closed_on='><'+str(closed_on),
        status_id='*'
        subject=('~'+str(subject)).encode('utf-8'))
    result1=str(len(issues1))
    return result1
    
    #return issues
#关闭BUG数定义筛选
def closed_list(closed_on,subject):
    redmine = MyRedMine("zhangmeiyuan656", "password")
    issues2 = redmine.redmine.issue.filter(
        project_id='f_project',
        closed_on='><'+str(closed_on)+'|'+str(closed_on),
        status_id='*',
        subject=('~'+str(subject)).encode('utf-8'))
    result2=str(len(issues2))
    return result2
#数据处理及时间戳转换使用
if __name__ == '__main__':
    redmine = MyRedMine("zhangmeiyuan656", "PASSDWOR")
    start_time = "2017-08-01 00:00:00"
    end_time = "2017-08-16 00:00:00"
    start_time = int(time.mktime(time.strptime(start_time, "%Y-%m-%d %H:%M:%S")))
    end_time = int(time.mktime(time.strptime(end_time, "%Y-%m-%d %H:%M:%S")))
    c = start_time
    while (c < end_time):
        c = c + 86400
        d = datetime.datetime.utcfromtimestamp(c)
        f=str(d.strftime("%Y-%m-%d")
        #定义类,字典,导入MYSQL数据库
        bugCount = Bugcount()
        bug_data1 = {}
        bug_data1['date_time'] = f
        bug_data1['newbug'] = creat_list(f,"XXXv1.0")
        bug_data1['closebug'] = closed_list(f,"XXXv1.0")
        bugCount.insert_to_db(bug_data1)
        bug_data1_string = json.dumps(bug_data1)
        print ('json:',bug_data1_string)

4.数据存储

MYSQL安装:

在官网上下载mysqlserver 下一步一直安装
mysql配置

  • 1.step1:
    苹果->系统偏好设置->最下边点mysql 在弹出页面中 关闭mysql服务
    (点击stop mysql server)
  • 2.进入终端输入:cd /usr/local/mysql/bin/
    回车后 登录管理员权限 sudo su
    回车后输入以下命令来禁止mysql验证功能 ./mysqld_safe --skip-grant-tables &
    回车后mysql会自动重启(偏好设置中mysql的状态会变成running)
  • 3.输入命令 ./mysql
    回车后,输入命令 FLUSH PRIVILEGES;
    回车后,输入命令 SET PASSWORD FOR 'root'@'localhost' = PASSWORD('你的新密码');
    至此,密码修改完成,可以成功登陆。
    注意测试:mac终端基础操作mysql
    首先手动启动MySQL应用程序
    打开终端输入如下命令: /usr/local/MySQL/bin/mysql -u root -p
    *4、进入编码,新建脚本mysql_sav.py
    由于篇幅有限,这里只摘抄一部分
#coding=utf-8
#引入所需要的库
import pymysql
import json

    #"""docstring for Bugcount"""
    #连接数据库
    connect = pymysql.connect(
        host='localhost',
        user='root',
        passwd='jammy2017',
        db='test',
        port=3306,
        charset='utf8'
        )
    #获取cursor对象来进行操作
    cursor = connect.cursor()

    def __init__(self):
        pass

    #插入数据
    def insert_to_db(self, bug_data):
        self.cursor.execute("use test")
        self.cursor.execute(
            "insert into bug_line(date_time,newbug,closebug) values(%s,%s,%s)", (bug_data.get('date_time'), bug_data.get('newbug'), bug_data.get("closebug")))
        self.connect.commit()

5.数据展现

这里尝试了三种方式
1、一种是将数据通过pands方法转换后以csv格式导出,这种只适用于将获取到的数据导出excel表格
示例如下:

#生成CSV格式导出
# df = DataFrame({
#     '时间周期':['2017-07-24|2017-07-30','2017-07-20|2017-07-23','2017-07-10|2017-07-20'],
#     '每周新建bug数':[str(len(issues)),str(len(issues2)),str(len(issues3))],
#     '每周关闭bug数':[str(len(issues4)),str(len(issues5)),str(len(issues6))]
#     })
# print(df)
# df.to_csv(
#     "/Users/zhangmeiyuan/Desktop/爬虫脚本/bug趋势表格.csv",encoding='gb18030'
#     )

2、通过POTLY库生成图表,不过此方法是在线生成的图表,借助POTLY的服务器,不能存本地

 py.sign_in('jammy0528','erYbv2ED1VmGbWglVhHf')
 new_bug = Scatter(
     x=[1,2,3],
     y=[str(len(issues3)),str(len(issues2)),str(len(issues))],  
 )
 close_bug = Scatter(
     x=[1,2,3],
     y=[str(len(issues6)),str(len(issues5)),str(len(issues4))]
 )
 data = Data([new_bug,close_bug])

 py.plot(data, filename = 'bug-line')

3、通过hightcharts+jupyter生成图表

2C46FA55-FC46-41EC-A40D-8F8A1996F00D.png

6、关于数据可视化,未完待续

后续考虑通过web框架flask将获取到的数据进行web数据可视化

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
目录
相关文章
|
9天前
|
供应链 监控 安全
1688商品详情API接口实战指南:合规获取数据,驱动B2B业务增长
1688商品详情API(alibaba.product.get)是合规获取B2B商品数据的核心工具,支持全维度信息调用,助力企业实现智能选品、供应链优化与市场洞察,推动数字化转型。
|
13天前
|
JSON 缓存 自然语言处理
多语言实时数据微店商品详情API:技术实现与JSON数据解析指南
通过以上技术实现与解析指南,开发者可高效构建支持多语言的实时商品详情系统,满足全球化电商场景需求。
|
14天前
|
缓存 监控 供应链
京东自定义 API 操作深度分析及 Python 实现
京东开放平台提供丰富API接口,支持商品、订单、库存等电商全链路场景。通过自定义API组合调用,可实现店铺管理、数据分析、竞品监控等功能,提升运营效率。本文详解其架构、Python实现与应用策略。
|
14天前
|
缓存 监控 供应链
唯品会自定义 API 自定义操作深度分析及 Python 实现
唯品会开放平台提供丰富API,支持商品查询、订单管理、促销活动等电商全流程操作。基于OAuth 2.0认证机制,具备安全稳定的特点。通过组合调用基础接口,可实现数据聚合、流程自动化、监控预警及跨平台集成,广泛应用于供应链管理、数据分析和智能采购等领域。结合Python实现方案,可高效完成商品搜索、订单分析、库存监控等功能,提升电商运营效率。
|
12天前
|
JSON API 数据安全/隐私保护
Python采集淘宝评论API接口及JSON数据返回全流程指南
Python采集淘宝评论API接口及JSON数据返回全流程指南
|
9天前
|
缓存 监控 供应链
亚马逊 MWS API 实战:商品详情精准获取与跨境电商数据整合方案
本文详细解析亚马逊MWS API接口的技术实现,重点解决跨境商品数据获取中的核心问题。文章首先介绍MWS接口体系的特点,包括多站点数据获取、AWS签名认证等关键环节,并对比普通电商接口的差异。随后深入拆解API调用全流程,提供签名工具类、多站点客户端等可复用代码。针对跨境业务场景,文章还给出数据整合工具实现方案,支持缓存、批量处理等功能。最后通过实战示例展示多站点商品对比和批量选品分析的应用,并附常见问题解决方案。该技术方案可直接应用于跨境选品、价格监控等业务场景,帮助开发者高效获取亚马逊商品数据。
|
14天前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
14天前
|
JSON 监控 API
速卖通商品列表API秘籍!轻松获取商品列表数据
速卖通商品列表API支持关键词搜索、分类筛选、多语言返回及分页排序功能,适用于比价系统、库存监控、市场研究等场景。开发者可快速获取商品数据,构建自动化应用。
|
13天前
|
数据采集 算法 API
阿里巴巴商品详情API秘籍!轻松获取商品详情数据
阿里巴巴商品详情API支持获取1688平台商品的标题、价格、库存、图片等核心信息,助力电商数据采集与分析。基于RESTful架构,通过App Key/Secret认证,安全可靠。提供Python示例代码,便于快速集成。
|
9天前
|
人工智能 供应链 API
淘宝API商品详情接口全解析:从基础数据到深度挖掘
淘宝API商品详情接口不仅提供基础数据,更通过深度挖掘实现从数据到洞察的跨越。开发者需结合业务场景选择合适分析方法,利用AI标签、区块链溯源等新技术,最终实现数据驱动的电商业务创新。

推荐镜像

更多