[物理学与PDEs]第1章习题5 偶极子的电场强度

简介: 试计算由习题 4 给出的电偶极子的所形成的电场的电场强度. 解答: $$\beex \bea {\bf E}(P)&=\cfrac{1}{4\pi\ve_0} \sez{\cfrac{-q}{r_{P_0P}^3}{\bf r}_{P_0P}+\cfrac{q}{r_{P_1P}^3}{\bf r...

试计算由习题 4 给出的电偶极子的所形成的电场的电场强度.

解答: $$\beex \bea {\bf E}(P)&=\cfrac{1}{4\pi\ve_0} \sez{\cfrac{-q}{r_{P_0P}^3}{\bf r}_{P_0P}+\cfrac{q}{r_{P_1P}^3}{\bf r}_{P_1P}}\\ &=\cfrac{q}{4\pi \ve_0} \sez{ \sex{-\cfrac{1}{r_{P_0P}^3}+\cfrac{1}{r_{P_0P}^3}}{\bf r}_{P_0P} +\cfrac{1}{r_{P_1P}^3}\sex{{\bf r}_{P_1P}-{\bf r}_{P_0P}} }\\ &=\cfrac{q}{4\pi\ve_0} \sed{ \sez{\cfrac{\p}{\p l}\sex{\cfrac{1}{r_{QP}^3}}|_{Q\in [P_0,P_1]}\cdot r_{P_0P_1}}\cdot {\bf r}_{P_0P}-\cfrac{{\bf r}_{P_0P_1}}{r_{P_1P}^3} }\\ &=\cfrac{q}{4\pi\ve_0} \sed{ \sez{ \cfrac{{\bf l}}{l}\cdot \sex{\n_Q\cfrac{1}{r_{QP}^3}}|_{Q=P_0}\cdot r_{P_0P_1} }\cdot {\bf r}_{P_0P} -\cfrac{{\bf r}_{P_0P_1}}{r_{P_0P}^3} }\quad\sex{r_{P_0P_1}\ll r_{P_0P}}\\ &=\cfrac{q}{4\pi \ve_0}\sez{ 3\sex{{\bf l}\cdot \cfrac{{\bf r}_{P_0P}}{r_{P_0P}^3}}\cdot {\bf r}_{P_0P} -\cfrac{{\bf r}_{P_0P_1}}{r_{P_0P}^3} }\\ &=\cfrac{1}{4\pi \ve_0r^3} \sez{3({\bf m}\cdot{\bf n}){\bf n}-{\bf m}}\quad\sex{{\bf n}=\cfrac{{\bf r}_{P_0P}}{r_{P_0P}}}. \eea \eeex$$ 

目录
相关文章
|
机器学习/深度学习
[物理学与PDEs]第5章习题2 Jacobian 的物质导数
验证 (3. 6) 式, 即证明 $$\bex \cfrac{\rd J}{\rd t}=J\Div_y {\bf v}. \eex$$   证明: $$\beex \bea \cfrac{\rd J}{\rd t} &=\cfrac{\rd }{\rd t}|{\bf F}|\\ &=\cfr...
608 0
|
资源调度
[物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性
试证明: 在物质描述下, 动量矩守恒定律等价于第二 Piola 应力张量的对称性.   证明: 由 $$\beex \bea \int_{G_t}\rho\sex{{\bf y}\times\cfrac{\rd {\bf v}}{\rd t}}\rd y &=\int_{G_0} \rho_0\...
1045 0
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场
设磁场 ${\bf H}$ 只有一个非零分量, 试证明 $$\bex ({\bf H}\cdot\n){\bf H}={\bf 0}. \eex$$   证明: 不妨设 ${\bf H}=(0,0,H_3)^T$, 则 $$\bex \Div{\bf H}=0\ra \cfrac{\p H_3}{\p x_3}=0.
578 0
|
资源调度 关系型数据库 Windows
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正
1.  连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0.  \eex$$     2.  动量守恒方程 $$\bex \cfrac{\p }{\p t}(\rho{\bf u}) +\Div(\rho {\bf u}\otimes{...
751 0
|
资源调度 Windows
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.3 磁流体力学方程组
1.  磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})=\cfrac{1}{\sigma\mu_0}\lap{\bf H},\\ \Div&{\bf H}=0,\\ \cfrac{\p \rho}...
795 0
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.3 混合气体状态方程
1.  记号与假设   (1)  已燃气体的化学能为 $0$.   (2)  单位质量的未燃气体的化学能为 $g_0>0$.     2.  对多方气体 (理想气体当 $T$ 不高时可近似认为), $$\bex p=(\gamma-1)e^\frac{S-S_0}{c_V}\rho^\...
666 0
[物理学与PDEs]第3章 磁流体力学
[物理学与PDEs]第3章第1节 等离子体   [物理学与PDEs]第3章第2节 磁流体力学方程组 2.1 考虑到导电媒质 (等离子体) 的运动对 Maxwell 方程组的修正   [物理学与PDEs]第3章第2节 磁流体力学方程组 2.
704 0
|
Perl
[物理学与PDEs]第3章习题4 理想磁流体的能量守恒方程
试证明: 对理想磁流体, 能量守恒方程 (4. 14) 可以写为如下形式: $$\beex \bea \cfrac{\p}{\p t}&\sex{\rho e+\cfrac{1}{2}\rho u^2 +\cfrac{1}{2}\mu_0H^2}\\ +\sum_{k=1}^3 \cfrac{\p}...
906 0
[物理学与PDEs]第2章习题2 质量力有势时的能量方程
试证明: 如果质量力有势, 即存在 $\phi$ 使 ${\bf F}=-\n \phi$, 那么理想流体的能量守恒方程的微分形式可写为 $$\bex \cfrac{\rd}{\rd t}\sex{e+\cfrac{u^2}{}+\cfrac{p}{\rho}+\phi} =\cfrac{1}{\rho}\cfrac{\p p}{\p t}+\cfrac{\p \phi}{\p t}.
752 0
[物理学与PDEs]第2章习题9 粘性流体动能的衰减
设 $\Omega\subset {\bf R}^3$ 为有界域, ${\bf u}$ 为 Navier-Stokes 方程组 (3. 4)-(3. 5) 满足边界条件 (3. 7) 的解, 其中体积力 ${\bf F}={\bf 0}$.
640 0