[物理学与PDEs]第4章第2节 反应流体力学方程组 2.3 混合气体状态方程

简介: 1.  记号与假设   (1)  已燃气体的化学能为 $0$.   (2)  单位质量的未燃气体的化学能为 $g_0>0$.     2.  对多方气体 (理想气体当 $T$ 不高时可近似认为), $$\bex p=(\gamma-1)e^\frac{S-S_0}{c_V}\rho^\...

1.  记号与假设

 

(1)  已燃气体的化学能为 $0$.

 

(2)  单位质量的未燃气体的化学能为 $g_0>0$.

 

 

2.  对多方气体 (理想气体当 $T$ 不高时可近似认为), $$\bex p=(\gamma-1)e^\frac{S-S_0}{c_V}\rho^\gamma,\quad e=e^\frac{S-S_0}{c_V}\rho^{\gamma-1}\ra p=(\gamma-1)\rho e =(\gamma-1)\rho (E-Zg_0). \eex$$

 

 

3.  对理想气体的多方气体, 温度为 $$\bex p=R\rho T\ra T=\cfrac{(\gamma-1)e}{R}=\cfrac{\gamma-1}{R}(E-Zg_0).\\ \eex$$ 往求熵: $$\beex \bea \rd E+p\rd \tau &=\rd e+p\rd \tau\quad\sex{Z\mbox{ 固定}}\\ &=\rd e+\cfrac{1-\gamma}{\rho e}\rd \rho\quad \sex{p\rd \tau=p\rd \cfrac{1}{\rho} =-\cfrac{p}{\rho^2}\rd \rho =\cfrac{(1-\gamma)e}{\rho}\rd \rho}\\ &=\rho^{\gamma-1}\rd \sex{\rho^{1-\gamma}e}\\ &\quad\sex{ M\rd x+N\rd y:\mbox{ 当 }\cfrac{M_y-N_x}{-M}=\phi(y)\mbox{ 时有积分因子 }e^{\int \phi(y)\rd y}}\\ &=\cfrac{(\gamma-1)e}{R} \rd \sez{\cfrac{R}{\gamma-1}\ln \sex{\rho^{1-\gamma}e}}\\ &=T\rd S. \eea \eeex$$ 故 $$\bex S=\cfrac{R}{\gamma-1}\ln\sex{\rho^{1-\gamma}e}+S_0 =\cfrac{R}{\gamma-1} \ln\sez{\rho^{1-\gamma}(E-Zg_0)}+S_0.  \eex$$

 

 

4.  反应率 $$\bex \bar k=KH(T-T_c)=\sedd{\ba{ll}K,&T>T_c,\\ 0,&T\leq T_c,\ea} \eex$$ 其中 $T_c$ 为燃点. 于是 $$\bex \cfrac{\p S}{\p Z}\bar k =-\cfrac{Kg_0}{T}H(T-T_c), \eex$$ 其具有间断性. 

目录
相关文章
[物理学与PDEs]第2章第1节 理想流体力学方程组 1.4 一维理想流体力学方程组
1.  一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cf...
810 0
|
机器学习/深度学习
[物理学与PDEs]第5章习题2 Jacobian 的物质导数
验证 (3. 6) 式, 即证明 $$\bex \cfrac{\rd J}{\rd t}=J\Div_y {\bf v}. \eex$$   证明: $$\beex \bea \cfrac{\rd J}{\rd t} &=\cfrac{\rd }{\rd t}|{\bf F}|\\ &=\cfr...
608 0
|
关系型数据库 Ruby Windows
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.2 反应流体力学方程组形式的化约
1.  粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\rd \rho}{\rd t}&+\rho \Div{\bf u}=0,\\ \cfrac{\rd Z}{\rd t}&=-\bar k(\rho,p,Z)Z,\\ \cfrac{\rd {\bf u}}{\rd t}&...
674 0
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.4 反应流体力学方程组的数学结构
1.  粘性热传导反应流体力学方程组是拟线性对称双曲 - 抛物耦合组.     2.  理想反应流体力学方程组是一阶拟线性对称双曲组 (取 ${\bf u},p,S,Z$ 为未知函数).     3.  右端项具有间断性.
695 0
[物理学与PDEs]第4章 反应流体力学
[物理学与PDEs]第4章第1节 引言   [物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组   [物理学与PDEs]第4章第2节 反应流体力学方程组 2.
744 0
|
Windows
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组
1.  记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧).     2.  物理化学   (1)  燃烧过程中, 通过化学反应释放能量; 而不仅仅需要考虑单位质量的内能 (分子的动能与势能), 也要考虑化...
645 0
[物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程
试证明: 利用连续性方程及动量方程, 能量守恒方程 (2. 15) 可化为 (2. 21) 的形式.   证明: 注意到 $$\beex \bea &\quad\cfrac{\p}{\p t}\sex{\cfrac{1}{2}\rho u^2} +\Div\sez{\cfrac{1}{2}\rh...
808 0
|
算法框架/工具
[物理学与PDEs]第2章习题6 有旋的 Navier-Stokes 方程组
试证明: 由 Navier-Stokes 方程组描述的流体运动一般总是有旋的, 即若 $\rot{\bf u}={\bf 0}$, 则 Navier-Stokes 方程组 (3. 4)-(3. 5) 即化为 Euler 方程组 (1.
640 0
[物理学与PDEs]第2章 流体力学
[物理学与PDEs]第2章第1节 理想流体力学方程组 1.1 预备知识   [物理学与PDEs]第2章第1节 理想流体力学方程组 1.2 理想流体力学方程组   [物理学与PDEs]第2章第1节 理想流体力学方程组 1.
790 0
[物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.1 一维反应流体力学方程组
1、 一维粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}&+\cfrac{\p}{\p x}(\rho u)=0,\\ \cfrac{\p}{\p t}(\rho u) &+\cfrac{\p}{\p x}\sez{ \rho u^2+p-\sex{...
770 0