[物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 试证明: 在物质描述下, 动量矩守恒定律等价于第二 Piola 应力张量的对称性.   证明: 由 $$\beex \bea \int_{G_t}\rho\sex{{\bf y}\times\cfrac{\rd {\bf v}}{\rd t}}\rd y &=\int_{G_0} \rho_0\...

试证明: 在物质描述下, 动量矩守恒定律等价于第二 Piola 应力张量的对称性.

 

证明: 由 $$\beex \bea \int_{G_t}\rho\sex{{\bf y}\times\cfrac{\rd {\bf v}}{\rd t}}\rd y &=\int_{G_0} \rho_0\sex{{\bf y}\times\cfrac{\p {\bf v}}{\p t}}\rd x,\\ \int_{S_t} ({\bf y}\times{\bf \sigma})\rd S_t&=\int_{S_t} ({\bf y}\times {\bf T}{\bf \nu})\rd S_t\\ &=\int_{S_0} ({\bf y}\times {\bf P}{\bf n})\rd S_0,\\ \int_{G_t}\rho({\bf y}\times{\bf b})\rd y&=\int_{G_0} \rho_0({\bf y}\times{\bf b})\rd x \eea \eeex$$ 知 $$\bex \int_{G_0}\rho_0{\bf y}\times\sex{\cfrac{\p{\bf v}}{\p t}-{\bf b}}\rd x =\int_{S_0}({\bf y}\times{\bf P}{\bf n})\rd S_0.  \eex$$ 由动量矩守恒定律 (3. 43) 知 $$\bex {\bf I}\equiv \int_{G_0} {\bf y}\times \Div_x{\bf P}\rd x =\int_{S_0} ({\bf y}\times{\bf P}{\bf n})\rd S_0\equiv {\bf J}. \eex$$ 写成分量形式为 $$\beex \bea I_i&=\int_{G_0} \sum_{j,k,l}\ve_{ijk} y_j\cfrac{\p P_{kl}}{\p x_l}\rd x,\\ J_i&=\int_{S_0}\sum_{j,k}\ve_{ijk}y_j({\bf P}{\bf n})_k\rd S_0\\ &=\int_{S_0}\sum_{j,k,l} \ve_{ijk} y_jP_{kl}n_l\rd S_0\\ &=\sum_{j,k,l}\ve_{ijk}\int_{G_0} \cfrac{\p}{\p x_l}(y_jP_{kl})\rd x\\ &=\sum_{j,k,l}\ve_{ijk}\int_{G_0} f_{jl}P_{kl}+y_j\cfrac{\p p_{kl}}{\p x_l}\rd x.  \eea \eeex$$ 于是 $$\bex \sum_{j,k,l}\ve_{ijk}f_{jl}P_{kl}=0.  \eex$$ 分别取 $i=1,2,3$ 有 $$\beex \bea \sum_l (f_{2l}P_{3l}-f_{3l}P_{2l})&=0,\\ \sum_l (f_{3l}P_{1l}-f_{1l}P_{3l})&=0,\\ \sum_l (f_{1l}P_{2l}-f_{2l}P_{1l})&=0.  \eea \eeex$$ 此即 $$\bex ({\bf F}{\bf P}^T)_{23}=({\bf F}{\bf P}^T)_{32},\quad ({\bf F}{\bf P}^T)_{31}=({\bf F}{\bf P}^T)_{13},\quad ({\bf F}{\bf P}^T)_{12}=({\bf F}{\bf P}^T)_{21}; \eex$$ 或等价地, $$\beex \bea ({\bf F}{\bf P}^T)^T&={\bf F}{\bf P}^T,\\ {\bf P}{\bf F}^T&={\bf F}{\bf P}^T,\\ {\bf P}&={\bf F}{\bf P}^T{\bf F}^{-T},\\ {\bf F}^{-1}{\bf P}&=({\bf F}^{-1}{\bf P})^T,\\ {\bf \Sigma}&={\bf \Sigma}^T. \eea \eeex$$

 

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
消息中间件
[物理学与PDEs]第5章习题4 广义 Hookean 定律的张量的对称性
设材料是超弹性的, 并设参考构形为自然状态, 证明由线性化得到的张量 ${\bf A}=(a_{ijkl})=\sex{2\cfrac{\p \bar p_{ij}}{c_{kl}}}$ 具有以下的对称性: $$\bex a_{ijkl}=a_{klij}.
560 0
[物理学与PDEs]第5章习题1 矩阵的极分解
证明引理 2. 1.    证明:   (1)  先证明存在正交阵 ${\bf P},{\bf Q}$ 及对角阵 ${\bf D}$ 使得 $$\bex {\bf F}={\bf P}{\bf D}{\bf Q}.
829 0
[物理学与PDEs]第5章习题9 伴随矩阵的特征值
设 $3\times 3$ 阵 ${\bf A}$ 的特征值为 $\lm_1,\lm_2,\lm_3$, 证明 $\cof {\bf A}$ 的特征值为 $$\bex \lm_2\lm_3,\quad \lm_3\lm_1,\quad \lm_1\lm_2.
703 0
|
资源调度 BI
[物理学与PDEs]第5章第3节 守恒定律, 应力张量
5. 3 守恒定律, 应力张量       5. 3. 1 质量守恒定律    $$\bex \cfrac{\p \rho}{\p t}+\Div_y(\rho{\bf v})=0.  \eex$$   5.
586 0
[物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程
试证明: 利用连续性方程及动量方程, 能量守恒方程 (2. 15) 可化为 (2. 21) 的形式.   证明: 注意到 $$\beex \bea &\quad\cfrac{\p}{\p t}\sex{\cfrac{1}{2}\rho u^2} +\Div\sez{\cfrac{1}{2}\rh...
802 0
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程
试证明: 利用连续性方程, 可将动量方程 (2. 14) 及未燃流体质量平衡方程 (2. 16) 分别化为 (2. 19) 与 (2. 20) 的形式.   证明: 注意到 $$\beex \bea \cfrac{\p}{\p t}(\rho{\bf u}) +\Div(\rho{\bf u}\...
757 0
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.4 反应流体力学方程组的数学结构
1.  粘性热传导反应流体力学方程组是拟线性对称双曲 - 抛物耦合组.     2.  理想反应流体力学方程组是一阶拟线性对称双曲组 (取 ${\bf u},p,S,Z$ 为未知函数).     3.  右端项具有间断性.
689 0
[物理学与PDEs]第4章第3节 一维反应流体力学方程组 3.1 一维反应流体力学方程组
1、 一维粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}&+\cfrac{\p}{\p x}(\rho u)=0,\\ \cfrac{\p}{\p t}(\rho u) &+\cfrac{\p}{\p x}\sez{ \rho u^2+p-\sex{...
758 0
|
算法框架/工具
[物理学与PDEs]第4章习题3 一维理想反应流体力学方程组的数学结构
证明: Euler 坐标系下的一维反应流体力学方程组 (3. 10)-(3. 13) 也是一个一阶拟线性双曲型方程组. 证明: 由 (3. 10), (3. 12), (3. 13) 知 $$\bex \cfrac{1}{\rho c^2}\cfrac{\p p}{\p t} +\cfrac{u}{\rho c^2}\cfrac{\p p}{\p x}+\cfrac{\p u}{\p x}=0.
847 0