[物理学与PDEs]第5章习题2 Jacobian 的物质导数

简介: 验证 (3. 6) 式, 即证明 $$\bex \cfrac{\rd J}{\rd t}=J\Div_y {\bf v}. \eex$$   证明: $$\beex \bea \cfrac{\rd J}{\rd t} &=\cfrac{\rd }{\rd t}|{\bf F}|\\ &=\cfr...

验证 (3. 6) 式, 即证明 $$\bex \cfrac{\rd J}{\rd t}=J\Div_y {\bf v}. \eex$$

 

证明: $$\beex \bea \cfrac{\rd J}{\rd t} &=\cfrac{\rd }{\rd t}|{\bf F}|\\ &=\cfrac{\rd }{\rd t} \sum_{j_1\cdots j_n}(-1)^{\tau(j_1\cdots j_n)} f_{1j_1}\cdots f_{nj_n}\\ &=\sum_{j_1\cdots j_n}(-1)^{\tau(j_1\cdots j_n)} \sum_k f_{1j_1}\cdot \cfrac{\rd f_{kj_k}}{\rd t}\cdots f_{nj_n}\\ &=\sum_k \sev{\ba{ccc} f_{11}&\cdots&f_{1n}\\ \vdots&&\vdots\\ \cfrac{\rd f_{k1}}{\rd t}&\cdots&\cfrac{\rd f_{kn}}{\rd t}\\ \vdots&&\vdots\\ f_{n1}&\cdots&f_{nn} \ea}\\ &=\sum_{k,j}\cfrac{\rd f_{kj}}{\rd t}A_{kj}\quad\sex{ A_{kj}:\ f_{kj}\mbox{ 在 }{\bf F}\mbox{ 中的代数余子式} }\\ &=\sum_{k,j} \cfrac{\p v_k}{\p x_j} A_{kj}\\ &\quad\sex{ \cfrac{\rd f_{kj}}{\rd t} =\cfrac{\p }{\p t}\cfrac{\p y_k}{\p x_j} =\cfrac{\p }{\p x_j}\cfrac{\p y_k}{\p t} =\cfrac{\p v_k}{\p x_j}: \mbox{看成 }t,x\mbox{ 的函数} }\\ &=\sum_{k,j,l} \cfrac{\p v_k}{\p y_l}\cfrac{\p y_l}{\p x_j}A_{kj}\quad\sex{\mbox{看成 }t,y\mbox{ 的函数}}\\ &=\sum_{k,l}\cfrac{\p v_k}{\p y_l}\sum_j f_{lj}A_{kj}\\ &=\sum_k \cfrac{\p v_k}{\p y_k}J\\ &=J\Div_y{\bf v}. \eea \eeex$$

目录
相关文章
|
资源调度
[物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性
试证明: 在物质描述下, 动量矩守恒定律等价于第二 Piola 应力张量的对称性.   证明: 由 $$\beex \bea \int_{G_t}\rho\sex{{\bf y}\times\cfrac{\rd {\bf v}}{\rd t}}\rd y &=\int_{G_0} \rho_0\...
1045 0
|
消息中间件
[物理学与PDEs]第5章习题4 广义 Hookean 定律的张量的对称性
设材料是超弹性的, 并设参考构形为自然状态, 证明由线性化得到的张量 ${\bf A}=(a_{ijkl})=\sex{2\cfrac{\p \bar p_{ij}}{c_{kl}}}$ 具有以下的对称性: $$\bex a_{ijkl}=a_{klij}.
570 0
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.3 混合气体状态方程
1.  记号与假设   (1)  已燃气体的化学能为 $0$.   (2)  单位质量的未燃气体的化学能为 $g_0>0$.     2.  对多方气体 (理想气体当 $T$ 不高时可近似认为), $$\bex p=(\gamma-1)e^\frac{S-S_0}{c_V}\rho^\...
666 0
[物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程
试证明: 利用连续性方程及动量方程, 能量守恒方程 (2. 15) 可化为 (2. 21) 的形式.   证明: 注意到 $$\beex \bea &\quad\cfrac{\p}{\p t}\sex{\cfrac{1}{2}\rho u^2} +\Div\sez{\cfrac{1}{2}\rh...
808 0
|
关系型数据库 RDS
[物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题
设 $\Omega$ 为单连通区域, 在其边界 $\vGa$ 上给定向量场 ${\bf u}_B$, 则在 $\bar\Omega$ 中存在速度场 ${\bf u}$, 使其在 $\Omega$ 中成立 $\Div{\bf u}=0$, 且该速度场有势, 即存在数量场 $\phi$ 使 ${\bf ...
912 0
[物理学与PDEs]第2章习题9 粘性流体动能的衰减
设 $\Omega\subset {\bf R}^3$ 为有界域, ${\bf u}$ 为 Navier-Stokes 方程组 (3. 4)-(3. 5) 满足边界条件 (3. 7) 的解, 其中体积力 ${\bf F}={\bf 0}$.
640 0
|
Windows
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.1 粘性热传导反应流体力学方程组
1.  记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧).     2.  物理化学   (1)  燃烧过程中, 通过化学反应释放能量; 而不仅仅需要考虑单位质量的内能 (分子的动能与势能), 也要考虑化...
645 0
[物理学与PDEs]第4章第2节 反应流体力学方程组 2.4 反应流体力学方程组的数学结构
1.  粘性热传导反应流体力学方程组是拟线性对称双曲 - 抛物耦合组.     2.  理想反应流体力学方程组是一阶拟线性对称双曲组 (取 ${\bf u},p,S,Z$ 为未知函数).     3.  右端项具有间断性.
695 0
|
算法框架/工具
[物理学与PDEs]第2章习题6 有旋的 Navier-Stokes 方程组
试证明: 由 Navier-Stokes 方程组描述的流体运动一般总是有旋的, 即若 $\rot{\bf u}={\bf 0}$, 则 Navier-Stokes 方程组 (3. 4)-(3. 5) 即化为 Euler 方程组 (1.
640 0
|
Perl
[物理学与PDEs]第3章习题4 理想磁流体的能量守恒方程
试证明: 对理想磁流体, 能量守恒方程 (4. 14) 可以写为如下形式: $$\beex \bea \cfrac{\p}{\p t}&\sex{\rho e+\cfrac{1}{2}\rho u^2 +\cfrac{1}{2}\mu_0H^2}\\ +\sum_{k=1}^3 \cfrac{\p}...
906 0