[家里蹲大学数学杂志]第043期《泛函分析》试题

简介: 1 ( 20 分 ) 叙述算子序列一致收敛、强收敛、弱收敛的定义, 举例说明强收敛而不一致收敛.   2 ( 20 分 ) 设 $\calX=C[a,b]$, 线性算子 $A$ 定义为 \[ (Ax)(t)=\int_a^tx(\tau)\rd\tau,\quad x\in C[a,b].

1 ( 20 分 ) 叙述算子序列一致收敛、强收敛、弱收敛的定义, 举例说明强收敛而不一致收敛.

 

2 ( 20 分 ) 设 $\calX=C[a,b]$, 线性算子 $A$ 定义为 \[ (Ax)(t)=\int_a^tx(\tau)\rd\tau,\quad x\in C[a,b]. \] 证明 $A$ 是广义的幂零算子, 即 \[ \lim_{n\to\infty}\sqrt[n]{\sen{A^n}}=0, \] 并求 $\sigma(A)$.

 

3 ( 15 分 ) 设 $\calX$ 是 $B^*$ 空间, $M$ 是 $\calX$ 的线性子空间. 若 $x_0\in\calX$ 适合 \[ d=\rho(x_0,M)>0, \] 证明存在 $f\in \calX^*$, 使得

(1) $f(x)=0,\quad\forall\ x\in M$;

(2) $f(x_0)=1$;

(3) $\dps{\sen{f}=\frac{1}{d}}$.

 

4 ( 20 分 ) 设 $A$ 是 $B$ 空间上的闭线性算子, 且记 \[ R_\lambda(A)=(\lambda I-A)^{-1},\quad\lambda\in \rho(A). \] 求证:

(1) $\rho(A)$ 是开集;

(2) $R_\lambda(A)$ 是 $\rho(A)$ 内的算子值解析函数;

(3) 设 $A$ 是线性有界算子, 则 $\sigma(A)\neq \emptyset$.

 

5 ( 15 分 ) 叙述并证明共鸣定理.

 

6 ( 10 分 ) 设 $\calX$ 是 $B^*$ 空间, 且 $\calX^*$ 是可分的, 证明: $\calX$ 本身是可分的. 

目录
相关文章
|
Perl 关系型数据库 RDS
[家里蹲大学数学杂志]第418期南开大学2013年实变函数期末考试试题参考解答
  1. 设 $A$ 为非可数的实数集合. 证明: 存在整数 $n$ 使得 $A\cap [n,n+1]$ 为可数集. ($15'$)   证明: 用反证法. 若 $$\bex A\cap [n,n+1]\mbox{ 可数,}\quad \forall\ n\in\bbZ.
1138 0
|
Perl
[家里蹲大学数学杂志]第410期定积分难题
  1. (1). 设 $x\geq 0$, $n$ 为自然数, 证明: $$\bex x^n\geq n(x-1)+1; \eex$$ (2). $\forall\ n$, 求证: $$\bex \int_0^{1+\frac{2}{\sqrt{n}}}x^n\rd x>2; \eex$$ (3).
821 0
|
Perl 资源调度
[家里蹲大学数学杂志]第392期中山大学2015年泛函分析考博试题回忆版
1. ($12'$) 求 $L^p(\bbR)$, $1\leq p\sigma}f_n(t)\rd t=0,\quad \forall\ \sigma>0. \eex$$ 试证: $$\bex f_n\to \delta,\mbox{ in }\mathcal{D}'(\bbR).
900 0
|
机器学习/深度学习
[家里蹲大学数学杂志]第391期山东大学2014-2015-1微分几何期末考试试题
注意: A. 卷面分 $5$ 分, 试题总分 $95$ 分. 其中卷面整洁, 书写规范 ($5$ 分); 卷面较整洁, 书写较规范 ($3$ 分); 书写潦草, 乱涂乱画 ($0$ 分). B. 可能用的公式: $$\beex \bea 1.
1027 0
|
关系型数据库 RDS Perl
[家里蹲大学数学杂志]第388期一套泛函分析期末试题参考解答
  1. ($20$ 分) 证明非线性积分方程 $$\bex x(t)+\lm \int_a^b K(t,s,x(s))\rd s=y(t),\quad \forall\ t\in [a,b] \eex$$ 在 $|\lm|$ 足够小时有唯一连续解.
1051 0
|
机器学习/深度学习 Perl
[家里蹲大学数学杂志]第390期中国科学院大学2014-2015-1微积分期末考试试题参考解答
  1. ($5'$) 利用 $\ve-N$ 语言证明 $$\bex \vlm{n}\frac{2015\cdot 2^n+20\sin n}{n!}=0. \eex$$   证明: 对 $\forall\ \ve>0$, 取 $$\bex N=\sez{\frac{4050}{\ve}...
1100 0
|
机器学习/深度学习 Perl
[家里蹲大学数学杂志]第389期中国科学院大学2014-2015-1微积分期中考试试题参考解答
  1. 设 $A,B,C$ 都是集合 $M$ 的子集, 请证明: $$\bex (C\subset A)\wedge (C\subset B)\lra (C\subset A\cap B). \eex$$   证明: 显然成立.
1241 0
|
关系型数据库 Perl RDS
[家里蹲大学数学杂志]第322期赣南师范学院数学竞赛培训第11套模拟试卷
  数学分析部分     1. 已知函数 $f(x)=\ln x-ax$, 其中 $a$ 为常数. 如果 $f(x)$ 有两个零点 $x_1,x_2$. 试证: $x_1x_2>e^2$.
688 0
[家里蹲大学数学杂志]第248期东北师范大学2013年数学分析考研试题
1 计算 $$\bex \lim_{x\to \infty} \sex{\frac{4x+3}{4x-1}}^{2x-1}. \eex$$ 2计算 $$\bex \lim_{x\to \infty}\frac{1}{n}\sum_{i=1}^n \ln \frac{i\pi}{n}.
868 0
[家里蹲大学数学杂志]第261期安徽大学2008年高等代数考研试题参考解答
1 ($20'=5\times 4'$) 填空题. (1)设 $$\bex \sex{\ba{ccc} 1&1&-1\\ 0&2&2\\ 1&-1&0 \ea}X=\sex{\ba{ccc} 1&-1&1\\ 1&1&0\\ 2&1&1 \ea}, \eex$$ 则 $X=?$ 解答: $$\b...
954 0