[再寄小读者之数学篇](2014-09-22 北京师范大学考研试题---渐近估计)

简介: [裴礼文, 数学分析中的典型问题与方法 (第 2 版), 北京: 高等教育出版社, 2006 年] (Page 436, T 4.5.14) 若函数 $p(t)$ 在 $[0,+\infty)$ 上可积, 且当 $t\to+\infty$ 时, $p(t)=o(t^N)$ ($N$ 为正整数).

[裴礼文, 数学分析中的典型问题与方法 (第 2 版), 北京: 高等教育出版社, 2006 年] (Page 436, T 4.5.14) 若函数 $p(t)$ 在 $[0,+\infty)$ 上可积, 且当 $t\to+\infty$ 时, $p(t)=o(t^N)$ ($N$ 为正整数). 又 $\lm<0$, 证明: 当 $t\to+\infty$ 时, $$\bex \int_t^{+\infty} p(\tau)e^{\lm \tau}\rd \tau =o(t^{N+1})e^{\lm t}. \eex$$

证明: 原题给的是 $p(t)$ 连续. 由 $p(t)=o(t^N)$ $(t\to+\infty)$ 知 $$\bex \forall\ \ve>0,\ \exists\ T\geq 1,\st t\geq T\ra |p(t)|\leq \ve t^N. \eex$$ 于是当 $t\geq T$ 时, $$\beex \bea \sev{\int_t^{+\infty} p(\tau)e^{\lm \tau}\rd \tau} &\leq \ve \cdot \int_t^{+\infty} \tau^N e^{\lm \tau}\rd \tau\\ &<\ve \cdot C t^N e^{\lm t}. \eea \eeex$$ 这里, 最后一步可通过分部积分得到, 且 $C$ 依赖于 $\lm$, $N$. 

目录
相关文章
|
5月前
24考研|高等数学的基础概念定理(三)——第三章|不定积分
24考研|高等数学的基础概念定理(三)——第三章|不定积分
|
5月前
24考研|高等数学的基础概念定理(二)——第二章|导数与微分
24考研|高等数学的基础概念定理(二)——第二章|导数与微分
|
5月前
24考研|高等数学的基础概念定理(一)——第一章|函数、极限、连续
24考研|高等数学的基础概念定理(一)——第一章|函数、极限、连续
|
机器学习/深度学习
【考研数学】常用数学公式大全
【考研数学】常用数学公式大全
326 0
【考研数学】常用数学公式大全
日期累加(北京理工大学考研机试题)
日期累加(北京理工大学考研机试题)
88 0
日期累加(北京理工大学考研机试题)
成绩排序2 (清华大学考研机试题)
成绩排序2 (清华大学考研机试题)
86 0
成绩排序2 (清华大学考研机试题)
成绩排序 (清华大学考研机试题)
成绩排序 (清华大学考研机试题)
102 0
成绩排序 (清华大学考研机试题)
|
存储 固态存储 程序员
考研计算机组成原理总结(5)
考研计算机组成原理总结(5)
773 0
|
存储 算法 调度
【考研必备】解开“黑匣子”的神秘面纱,透视数字世界底层实现过程(计算机组成原理)(下)
【考研必备】解开“黑匣子”的神秘面纱,透视数字世界底层实现过程(计算机组成原理)
|
6月前
|
存储 知识图谱
【计算机组成原理】指令系统&考研真题详解之拓展操作码!
也就是说 “其中三地址指令29”条这句话,完全可以翻译成“三地址这种类型的指令一共能有29种不同的可能性” 这样说就清晰多 因为这就意味着 我们需要用若干个字节 来表示这29种不同的可能性 然后又已知每一个字节位能表示的可能性是2种(0/1),那么我们想有多少个字节可以表示29种不同的可能呢?最少5种 (因为2的4次方=16<29),2^5=32>29,也就是说有32-29=3种可能性是不在三地址指令这种类型的指令集里面的,所以这3 种余出来的可能性要被利用 就在下一种 “二地址指令集”中利用到
114 0

热门文章

最新文章