[詹兴致矩阵论习题参考解答]习题1.5

简介: 5. (Gelfand) 设 $A\in M_n$, 证明: $$\bex \rho(A)=\vlm{k}\sen{A^k}_\infty^\frac{1}{k}. \eex$$     证明: (1).

5. (Gelfand) 设 $A\in M_n$, 证明: $$\bex \rho(A)=\vlm{k}\sen{A^k}_\infty^\frac{1}{k}. \eex$$

 

 

证明: (1). 对 $\forall\ \lm\in \sigma(A)$, $$\bex \exists\ x\neq 0,\st Ax=\lm x, \eex$$ 而 $$\bex A^kx=\lm^k x\ra \sen{A^k x}_2=|\lm|^k\sen{x}_2, \eex$$ $$\bex \sen{A^k}_\infty=\max_{\sen{x}_2=1}\sen{A^kx}_2 \geq |\lm|^k. \eex$$ 于是 $$\bex \sen{A^k}_{\infty}^\frac{1}{k}\geq |\lm|,\quad \vli{k}\sen{A^k}_{\infty}^\frac{1}{k}\geq |\lm|. \eex$$ 让 $\lm$ 跑遍 $\sigma(A)$ 即有 $$\bex \vli{k}\sen{A^k}_{\infty}^\frac{1}{k}\geq \rho(A). \eex$$ (2). 当 $\lm>\rho$ 时, $$\bex \sum_{k=0}^\infty \sen{\frac{A^k}{\lm^k}}_\infty \leq \sum_{k=0}^\infty \sen{\frac{A}{\lm}}_\infty^k =\frac{1}{1-\frac{\sen{A}_\infty}{\lm}}. \eex$$ 由 Cauchy-Hadamard 公式即知 $$\bex \vls{k}\frac{\sen{A^k}_\infty^\frac{1}{k}}{\lm}\leq 1. \eex$$ 令 $\lm\searrow \rho(A)$ 即有 $$\bex \vls{k}\sen{A^k}_\infty^\frac{1}{k}\leq \rho(A). \eex$$

目录
相关文章
[詹兴致矩阵论习题参考解答]习题7.3
3. 一个 $n$ 阶符号模式方阵 $A$ 称为谱任意模式, 如果每个首一的 $n$ 次实多项式都是 $Q(A)$ 中某个矩阵的特征多项式. 研究谱任意模式.       证明: Open problems.
540 0
|
Perl
[詹兴致矩阵论习题参考解答]习题6.9
9. (Hopf) 将 $n$ 阶正矩阵 $A=(a_{ij})$ 的特征值按模从大到小排列为 $$\bex \rho(A)>|\lm_2|\geq \cdot \geq |\lm_n|, \eex$$ 并记 $$\bex \al=\max\sed{a_{ij};1\leq i,j\leq n}, \quad \beta=\min \max\sed{a_{ij};1\leq i,j\leq n}.
534 0
[詹兴致矩阵论习题参考解答]习题6.2
2. 设 $A$ 是个非负方阵且存在一个正整数 $p$ 使得 $A^p>0$, 则对所有正整数 $q\geq p$, $A^q>0$.       证明: 不妨设 $n\geq 2$. 由定理 6.
627 0
[詹兴致矩阵论习题参考解答]习题6.4
4. 设 $A$ 是个不可约非负方阵, $0\leq t\leq 1$, 则 $$\bex \rho[tA+(1-t)A^T]\geq \rho(A). \eex$$       证明:   (1).
560 0
[詹兴致矩阵论习题参考解答]习题5.1
1. $A\in M_n$ 称为正交投影矩阵如果 $A$ 是 Hermite 矩阵且幂等: $$\bex A^*=A=A^2. \eex$$ 证明: 若 $A,B\in M_n$ 为正交投影矩阵, 则 $\sen{A-B}_\infty \leq 1$.
714 0
|
资源调度 前端开发 rax
[詹兴致矩阵论习题参考解答]习题4.10
10. 设 $A,B\in M_n$ 并且 $AB$ 为 Hermite 矩阵, 则对任何酉不变范数 $$\bex \sen{AB}\leq \sen{\Re(BA)}. \eex$$       证明: (1).
572 0
[詹兴致矩阵论习题参考解答]习题4.8
8. 设 $p,q$ 为正实数, 满足 $\dps{\frac{1}{p}+\frac{1}{q}=1}$, 设 $x,y\in \bbR^n_+$, 则对 $\bbR^n$ 上的任何对称规度函数 $\varphi$ 有 $$\bex \varphi(x\circ y)\leq [\varphi(x...
582 0
[詹兴致矩阵论习题参考解答]习题4.16
16. (Fan-Hoffman) 设 $A\in M_n$, $A=UP$ 为极分解, $U$ 为酉矩阵, $P$ 为半正定矩阵. 若 $W\in M_n$ 为酉矩阵, 则 $$\bex \sen{A-U}\leq \sen{A-W}\leq \sen{A+U} \eex$$ 对任何酉不变范数成立.
624 0
[詹兴致矩阵论习题参考解答]习题4.2
2. (Thompson). 设 $A,B\in M_n$, 则存在酉矩阵 $U, V\in M_n$ 满足 $$\bex |A+B|\leq U|A|U^*+V|B|V^*. \eex$$       证明: (1).
785 0
[詹兴致矩阵论习题参考解答]习题4.14
14. 设 $A,B\in M_n$, 则对 $M_n$ 上的任何酉不变范数有 $$\bex \frac{1}{2}\sen{\sex{\ba{cc} A+B&0\\ 0&A+B \ea}}\leq \sen{\sex{\ba{cc} A&0\\ 0&B \ea}} \leq \sen{\sex{\ba{cc} |A|+|B|&0\\ 0&0 \ea}}.
671 0