[数分提高]2014-2015-2第5教学周第2次课讲义 3.2 微分中值定理

简介: 1. 设 $f$ 在 $(a,b)$ 内可微, $$\bex \lim_{x\to a^+}f(x)=A=\lim_{x\to b^-}f(x). \eex$$ 试证: $$\bex \exists\ \xi\in (a,b),\st f'(\xi)=0.

 1. 设 $f$ 在 $(a,b)$ 内可微, $$\bex \lim_{x\to a^+}f(x)=A=\lim_{x\to b^-}f(x). \eex$$ 试证: $$\bex \exists\ \xi\in (a,b),\st f'(\xi)=0. \eex$$

 2. 设 $f$ 在 $[0,1]$ 上可微, $f(0)=0$, $f(1)=1$, $k_1,\cdots,k_n$ 为 $n$ 个正数. 试证: $$\bex \exists\ 0\leq x_1<\cdots<x_n\leq 1,\st \sum_{i=1}^n \frac{k_i}{f(x_i)}=\sum_{i=1}^n k_i. \eex$$

 3. 设 $f\in C[a,b]\cap C^2(a,b)$, 试证: $$\bex \exists\ \xi\in (a,b),\st f(b)-2f\sex{\frac{a+b}{2}} +f(a)=\frac{(b-a)^2}{4}f''(\xi). \eex$$

 4. 设 $f$ 在 $[0,\infty)$ 上可微, $f(0)=0$, 且 $$\bex \exists\ A>0,\st |f'(x)|\leq A|f(x)|,\quad \forall\ x\in [0,\infty). \eex$$ 试证: $f\equiv 0$.

 5. 设 $f$ 在 $[0,a]$ 上适合 $|f''(x)|\leq M$, $f$ 在 $(0,a)$ 内取得最大值. 试证: $$\bex |f'(0)|+|f'(a)|\leq Ma. \eex$$

 6. (Darboux 定理) (1). 设 $f$ 在 $(a,b)$ 内可导, 则 $(a,b)$ 内的点要么为 $f'(x)$ 的连续点, 要么为 $f'$ 的第二类间断点. (2). 设 $f$ 在 $[a,b]$ 上可导, $f'(a)<f'(b)$, 则 $$\bex \forall\ c:\ f'(a)<c<f'(b),\ \exists\ \xi\in (a,b),\st f'(\xi)=c. \eex$$

 7. 设 $f\in C^2(\bbR)$ 且有界. 试证: $$\bex \exists\ \xi\in \bbR,\st f''(\xi)=0. \eex$$

 8. 设 $f\in C^3[a,b]$. 试证: $$\bex \exists\ \xi\in (a,b),\st f(b)=f(a)+\frac{1}{2}(b-a)[f'(a)+f'(b)]-\frac{1}{12}(b-a)^3f'''(\xi). \eex$$

 作业. 设 $f\in C^2[a,b]$ 适合 $f(a)=f(b)=0$. 试证: $$\bex \forall\ x\in [a,b],\ \exists\ \xi\in (a,b),\st f(x)=\frac{1}{2}(x-a)(x-b)f''(\xi). \eex$$

 

目录
相关文章
|
6月前
24考研|高等数学的基础概念定理(一)——第一章|函数、极限、连续
24考研|高等数学的基础概念定理(一)——第一章|函数、极限、连续
|
7月前
程序技术好文:高等代数第3讲——n阶行列式
程序技术好文:高等代数第3讲——n阶行列式
41 0
|
7月前
大学物理(上)-期末知识点结合习题复习(3)——质点运动学-惯性系 非惯性系 惯性力 动量定理 动量守恒定律
大学物理(上)-期末知识点结合习题复习(3)——质点运动学-惯性系 非惯性系 惯性力 动量定理 动量守恒定律
66 0
|
7月前
大学物理(上)-期末知识点结合习题复习(4)——质点运动学-动能定理 力做功 保守力与非保守力 势能 机械能守恒定律 完全弹性碰撞
大学物理(上)-期末知识点结合习题复习(4)——质点运动学-动能定理 力做功 保守力与非保守力 势能 机械能守恒定律 完全弹性碰撞
141 0
|
7月前
大学物理(上)-期末知识点结合习题复习(5)——刚体力学-转动惯量、力矩、线密度 面密度 体密度、平行轴定理和垂直轴定理、角动量定理和角动量守恒定律
大学物理(上)-期末知识点结合习题复习(5)——刚体力学-转动惯量、力矩、线密度 面密度 体密度、平行轴定理和垂直轴定理、角动量定理和角动量守恒定律
60 0
|
8月前
日拱一卒,月进一步(6)(杨辉三角2)
119. 杨辉三角 II - 力扣(LeetCode)
51 0
|
算法
Plant(快速幂+数学分析(没想到吧,数学无处不在))
Plant(快速幂+数学分析(没想到吧,数学无处不在))
77 0
|
搜索推荐 算法 Java
算法笔试模拟题精解之“能量半径”
题目的含义就是找到距离原点最近的第k个点,并求它的半径。这个题的关键在于排序算法。使用最简单的冒泡排序,时间复杂度O(n^2);使用快速排序等好一点的排序算法,时间复杂度O(nlog(n));也可以使用java中Arrays类中的sort函数。
算法笔试模拟题精解之“能量半径”
|
数据安全/隐私保护
高等代数思维训练-从一道例题看高等代数的常用方法[河北师范大学麻常利教授]
链接: http://pan.baidu.com/s/1bn4jOlD 密码: w6kg   这是pdf文件,网上随便就可以找到阅读器,比如 foxit reader 等绿色软件.
1042 0
|
Perl
[数分提高]2014-2015-2第6教学周第2次课讲义 3.4 导数的综合应用
1. 试证: $$\bex \frac{|a+b|}{1+|a+b|} \leq \frac{|a|}{1+|a|} +\frac{|b|}{1+|b|}. \eex$$   2. 试证: (1). $$\bex 0
746 0