[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.20

简介: 设 $a_n>0$, $\dps{\vsm{n}a_n}$ 收敛, $na_n$ 单调, 证明: $$\bex \vlm{n}na_n\ln n=0. \eex$$   证明: 又题意, $na_n\searrow 0$.

设 $a_n>0$, $\dps{\vsm{n}a_n}$ 收敛, $na_n$ 单调, 证明: $$\bex \vlm{n}na_n\ln n=0. \eex$$

 

证明: 又题意, $na_n\searrow 0$. 又由 Cauchy 收敛原理, $\forall\ \ve>0,\ \exists\ N,\st n\geq N\ra$ $$\beex \bea \frac{\ve}{2}&>\sev{\sum_{k=[\sqrt{n}]}^{n-1}a_k} =\sev{\sum_{k=[\sqrt{n}]}^{n-1} \frac{1}{k}\cdot ka_k}\\ &\geq na_n \sum_{k=[\sqrt{n}]}^{n-1}\frac{1}{k} \geq na_n\sum_{k=[\sqrt{n}]}^{n-1} \int_k^{k+1}\frac{1}{x}\rd x\\ &=na_n\int_{[\sqrt{n}]}^n\frac{1}{x}\rd x\geq na_n\int_{\sqrt{n}}^n\frac{1}{x}\rd x=\frac{1}{2} na_n\ln n. \eea \eeex$$

目录
相关文章
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.27
设 $f(x)$ 是 $[0,2\pi]$ 上的凸函数, $f'(x)$ 有界. 求证: $$\bex a_n=\frac{1}{\pi}\int_0^{2\pi} f(x)\cos nx\rd x\geq 0.
805 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.21
设 $f(x)$ 的一阶导数在 $[0,1]$ 上连续, 且 $f(0)=f(1)=0$, 求证: $\dps{\sev{\int_0^1 f(x)\rd x}\leq \frac{1}{4}\max_{0\leq x\leq 1}|f'(x)|}$.
694 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.20
设 $a>0$, 函数 $f(x)$ 在 $[0,a]$ 上连续可微, 证明: $$\bex |f(0)|\leq \frac{1}{a}\int_0^a |f(x)|\rd x+\int_0^a |f'(x)|\rd x.
816 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.26
需要全部的解答, 请 http://www.cnblogs.com/zhangzujin/p/3527416.html    设 $f(x)$ 是 $[-\pi,\pi]$ 上的凸函数, $f'(x)$ 有界.
938 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.11
需要全部的解答, 请 http://www.cnblogs.com/zhangzujin/p/3527416.html    函数 $f(x)$ 在 $[a,b]$ 上连续, 并且对于任何区间 $[\al,\beta]$ ($a\leq \al
954 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.18
设 $\dps{\lim_{x\to 0}\frac{1}{bx-\sin x}\int_0^x \frac{t^2}{\sqrt{a+t^2}}\rd t=1}$, 试求正常数 $a$ 与 $b$. (华中师范大学)   解答: 由 $$\beex \bea 1&=\lim_{x\to 0}\...
859 0
|
前端开发 rax
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.2
证明: $\dps{0\leq x\leq \frac{\pi}{2}}$ 时, $\dps{\sin x\leq x-\frac{1}{3\pi}x^3}$.   证明: 由例 4.3.19, $$\bex \sin x
639 0
|
Perl
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.6
$f(x)$ 在 $[a,b]$ 上可导, $f'(x)\searrow$, $|f'(x)|\geq m>0$, 试证: $$\bex \sev{\int_a^b \cos f(x)\rd x}\leq \frac{2}{m}.
783 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.1
需要全部的解答, 请 http://www.cnblogs.com/zhangzujin/p/3527416.html    证明:   (1). $\dps{\sqrt{2}e^{-\frac{1}{2}}
647 0