[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.25

简介: 对函数 $$\bex \zeta(s)=\vsm{n}\frac{1}{n^s}\quad\sex{s>1}, \eex$$ 证明: $\dps{\zeta(s)=s\int_1^\infty \frac{\sez{x}}{x^{s+1}}\rd x}$, 其中 $\sez{x}$ 为 $x$ 的整数部分.

对函数 $$\bex \zeta(s)=\vsm{n}\frac{1}{n^s}\quad\sex{s>1}, \eex$$ 证明: $\dps{\zeta(s)=s\int_1^\infty \frac{\sez{x}}{x^{s+1}}\rd x}$, 其中 $\sez{x}$ 为 $x$ 的整数部分. (西北师范大学)

 

证明: $$\beex \bea s\int_1^\infty \frac{\sez{x}}{x^{s+1}}\rd x &=s\vsm{n}\int_n^{n+1} \frac{\sez{x}}{x^{s+1}}\rd x\\ &=s\vsm{n}n \int_n^{n+1} \frac{\rd x}{x^{s+1}} =\vsm{n}n\sez{\frac{1}{n^s}-\frac{1}{(n+1)^s}}\\ &=\vlm{n}\sum_{k=1}^n \sez{\frac{1}{k^{s-1}}-\frac{k}{(k+1)^s}}\\ &=\vlm{n}\sez{\sum_{k=1}^n \frac{1}{k^{s-1}} -\sum_{k=1}^n \frac{(k+1)-1}{(k+1)^s}}\\ &=\vlm{n}\sez{1-\frac{1}{(n+1)^s}+\sum_{k=1}^n \frac{1}{(k+1)^s}}\\ &=\vsm{n}\frac{1}{n^s}. \eea \eeex$$

目录
相关文章
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.27
设 $f(x)$ 是 $[0,2\pi]$ 上的凸函数, $f'(x)$ 有界. 求证: $$\bex a_n=\frac{1}{\pi}\int_0^{2\pi} f(x)\cos nx\rd x\geq 0.
816 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.20
设 $a>0$, 函数 $f(x)$ 在 $[0,a]$ 上连续可微, 证明: $$\bex |f(0)|\leq \frac{1}{a}\int_0^a |f(x)|\rd x+\int_0^a |f'(x)|\rd x.
828 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.5
若 $f'(x)$ 在 $[0,2\pi]$ 上拦蓄, 且 $f'(x)\geq 0$, 则对任意正整数 $n$, 有 $$\bex \sev{\int_0^{2\pi}f(x)\sin nx\rd x}\leq \frac{2[f(2\pi)-f(0)]}{n}.
579 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.4
把满足下述条件 (1) 和 (2) 的实函数 $f$ 的全体记作 $F$:   (1). $f(x)$ 在闭区间 $[0,1]$ 上连续, 并且非负;   (2). $f(0)=0$, $f(1)=1$.
542 0
|
Windows
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.9
需要全部的解答, 请 http://www.cnblogs.com/zhangzujin/p/3527416.html    证明 $\dps{\int_0^\frac{\pi}{2} t\sex{\frac{\sin nt}{\sin t}}^4\rd t\frac{2}{\pi}x,\ 0
882 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.27
求 $\dps{\lim_{t\to +\infty}\sex{\frac{1}{t} +\frac{2t}{t^2+1^2}+\frac{2t^2}{t^2+2^2}+\cdots+\frac{2t}{t^2+n^2}+\cdots}}$.
614 0
|
Perl
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.29
需要全部的解答, 请 http://www.cnblogs.com/zhangzujin/p/3527416.html    证明: $\dps{\vlm{n}\sed{\sum_{k=2}^n \frac{1}{k\ln k}-\ln\ln n}}$ 存在 (有限).
1156 0
|
机器学习/深度学习
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.6
证明下列级数收敛:   (1). $\dps{\vsm{n}\sez{\frac{1}{n}-\ln\sex{1+\frac{1}{n}}}}$;   (2). $\dps{\vsm{n}\sez{e-\sex{1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}}}}$.
806 0
|
Perl
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.11
证明: 若 $a_n>0$, $a_n\searrow 0$, 则 $\dps{\vsm{n}a_n}$ 与 $\dps{\vsm{m}p_m2^{-m}}$ ($p_m=\max\sed{n;a_n\geq 2^{-m}}$) 同时敛散.
888 0
[裴礼文数学分析中的典型问题与方法习题参考解答]5.1.14
设 $a_n\neq 0\ (n=1,2,\cdots)$ 且 $\dps{\vlm{n}a_n=a\ (a\neq 0)}$. 求证: 下列两级数 $$\bex \vsm{n}|a_{n+1}-a_n|,\quad \vsm{n}\sev{\frac{1}{a_{n+1}}-\frac{1}{a_n}} \eex$$ 同时收敛或同时发散.
612 0
下一篇
无影云桌面