[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.16

简介: 按牛顿二项式展开及代换 $x=\sin t$ 两种方法计算积分 $\dps{\int_0^1 (1-x^2)^n\rd x}$ ($n$ 为正整数). 并由此说明: $$\bex \sum_{k=0}^n C_n^k(-1)^k \frac{1}{2k+1}=\frac{(2n)!!}{(2n+1)!!}.

按牛顿二项式展开及代换 $x=\sin t$ 两种方法计算积分 $\dps{\int_0^1 (1-x^2)^n\rd x}$ ($n$ 为正整数). 并由此说明: $$\bex \sum_{k=0}^n C_n^k(-1)^k \frac{1}{2k+1}=\frac{(2n)!!}{(2n+1)!!}. \eex$$

 

证明: $$\beex \bea \int_0^1 (1-x^2)^n\rd x &=\int_0^1 \sum_{k=0}^n C_n^k (-x^2)^k\rd x =\sum_{k=0}^n C_n^k(-1)^k \frac{1}{2k+1},\\ \int_0^1 (1-x^2)^n\rd x &=\int_0^\frac{\pi}{2} \cos^{2n}t \cdot \cos t\rd t\quad\sex{x=\sin t}\\ &\equiv I_{2n+1}, \eea \eeex$$ 而由 $$\beex \bea I_{2n+1}&=\int_0^\frac{\pi}{2} \cos^{2n-1}t\cdot (1-\sin^2t)\rd t\\ &=I_{2n-1}+\frac{1}{2n}\int_0^\frac{\pi}{2} \sin t\rd \cos^{2n}t\\ &=I_{2n-1}-\frac{1}{2n}\int_0^\frac{\pi}{2}\cos^{2n+1}t\rd t\quad\sex{\mbox{分部积分}} \eea \eeex$$ 知 $$\bex I_{2n+1}=\frac{2n}{2n+1}I_{2n-1}=\cdots=\frac{(2n)!!}{(2n+1)!!}I_1=\frac{(2n)!!}{(2n+1)!!}. \eex$$

目录
相关文章
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.12
证明: 若 $f(x)$ 为 $[0,1]$ 上的连续函数, 且对一切 $x\in [0,1]$ 有 $\dps{\int_0^x f(u)\rd u\geq f(x)\geq 0}$, 则 $f(x)\equiv 0$.
800 0
|
关系型数据库 RDS
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.17
设在 $\dps{\sex{0,\frac{\pi}{2}}}$ 内连续函数 $f(x)>0$, 且满足 $$\bex f^2(x)=\int_0^x f(t)\frac{\tan t}{\sqrt{1+2\tan^2t}}\rd t.
915 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.15
$[a,b]$ 上的连续函数列 $\varphi_1,\varphi_2,\cdots,\varphi_n,\cdots$ 满足 $\dps{\int_a^b \varphi_n^2(x)\rd x=1}$.
752 0
|
关系型数据库 RDS
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.24
设 $\dps{f(x)=\int_x^{x+1}\sin t^2\rd t}$, 求证: $x>0$ 时, $\dps{|f(x)|
554 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.18
设 $\dps{\lim_{x\to 0}\frac{1}{bx-\sin x}\int_0^x \frac{t^2}{\sqrt{a+t^2}}\rd t=1}$, 试求正常数 $a$ 与 $b$. (华中师范大学)   解答: 由 $$\beex \bea 1&=\lim_{x\to 0}\...
880 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.20
设 $a>0$, 函数 $f(x)$ 在 $[0,a]$ 上连续可微, 证明: $$\bex |f(0)|\leq \frac{1}{a}\int_0^a |f(x)|\rd x+\int_0^a |f'(x)|\rd x.
833 0
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.3
求证: $\dps{f(x)=\int_0^x (t-t^2)\sin^{2n}t\rd t}$ ($n$ 为正整数) 在 $x\geq 0$ 上的最大值不超过 $\dps{\frac{1}{(2n+2)(2n+3)}}$.
683 0
|
Windows
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.9
需要全部的解答, 请 http://www.cnblogs.com/zhangzujin/p/3527416.html    证明 $\dps{\int_0^\frac{\pi}{2} t\sex{\frac{\sin nt}{\sin t}}^4\rd t\frac{2}{\pi}x,\ 0
888 0
|
前端开发 rax
[裴礼文数学分析中的典型问题与方法习题参考解答]4.3.2
证明: $\dps{0\leq x\leq \frac{\pi}{2}}$ 时, $\dps{\sin x\leq x-\frac{1}{3\pi}x^3}$.   证明: 由例 4.3.19, $$\bex \sin x
653 0

热门文章

最新文章