Apache Flink流作业提交流程分析

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 提交流程调用的关键方法链 用户编写的程序逻辑需要提交给Flink才能得到执行。本文来探讨一下客户程序如何提交给Flink。鉴于用户将自己利用Flink的API编写的逻辑打成相应的应用程序包(比如Jar)然后提交到一个目标Flink集群上去运行是比较主流的使用场景,因此我们的分析也基于这一场景进行。

用户编写的程序逻辑需要提交给Flink才能得到执行。本文来探讨一下客户程序如何提交给Flink。鉴于用户将自己利用Flink的API编写的逻辑打成相应的应用程序包(比如Jar)然后提交到一个目标Flink集群上去运行是比较主流的使用场景,因此我们的分析也基于这一场景进行。

Flink的API针对不同的执行环境有不同的Environment对象,这里我们主要基于常用的RemoteStreamEnvironmentRemoteEnvironment进行分析

在前面我们谈到了Flink中实现了“惰性求值”,只有当最终调用execute方法时,才会“真正”开始执行。因此,execute方法是我们的切入点。

其源码位于org.apache.flink.streaming.api.environment.RemoteStreamEnvironment

首先,我们来看一下其execute方法触发的关键方法调用链示意图:

streaming-remoge-execute-method-chain

根据上图的调用链,我们针对这些关键方法进行剖析,当然一些细节性的内容我们可能会暂时略过,这样可以保证主路径一直都很清晰。

getStreamGraph方法用于获得一个StreamGraph的实例,该实例表示流的完整的拓扑结构并且包含了生成JobGraph所必要的相关信息(包含了sourcesink的集合以及这些在图中的“节点”抽象化的表示、一些虚拟的映射关系、执行和检查点的配置等)。

获得StreamGraph之后,通过调用executeRemotely方法进行远程执行。该方法首先根据获取到的用户程序包的路径以及类路径创建加载用户代码的类加载器:

ClassLoader usercodeClassLoader = JobWithJars.buildUserCodeClassLoader(
jarFiles, globalClasspaths,   getClass().getClassLoader());

紧接着根据配置构建Client对象(Client对象是真正跟JobManager对接的内部代理):

Client client;
try {   
    client = new Client(configuration);   
    client.setPrintStatusDuringExecution(getConfig().isSysoutLoggingEnabled());
}catch (Exception e) {
   throw new ProgramInvocationException("Cannot establish connection to JobManager: " + e.getMessage(), e);
}

后面的事情就此被Client接管:

try {   
    return client.runBlocking(streamGraph, jarFiles, globalClasspaths, usercodeClassLoader);
}catch (ProgramInvocationException e) {   
    throw e;
}catch (Exception e) {   
    String term = e.getMessage() == null ? "." : (": " + e.getMessage());   
    throw new ProgramInvocationException("The program execution failed" + term, e);
}finally {   
    client.shutdown();
}

client对象调用了runBlocking以阻塞式的行为“运行”用户程序并等待返回JobExecutionResult对象作为Job的执行结果。执行完成,最终在finally块中,调用shutdown方法关闭并释放资源。

runBlocking被调用后,调用链跳转到Client类中。为了适配多种提交方式以及运行模式,runBlocking方法有着非常多的重载。在当前的远程执行环境下,runBlocking在多个重载方法之间跳转的过程中,会调用getJobGraph方法获得JobGraph的实例。JobGraph表示Flink dataflow 程序,它将会被JobManager所理解并接收。在某个Job被提交给JobManager之前,通过Flink提供的高层次的API都将会被转化为JobGraph表示。关于如何获得JobGraph的实现,我们后面会进行剖析。这里,让我们忽视这些细节,进入下一个关键方法。

runBlocking_1其实是runBlocking方法的重载,这里加一个后缀标识,只是为了跟上面的runBlocking进行区别。runBlocking_1方法中,首先利用LeaderRetrievalUtils创建了LeaderRetrievalService这一服务对象:

LeaderRetrievalService leaderRetrievalService;
try {   
    leaderRetrievalService = LeaderRetrievalUtils.createLeaderRetrievalService(config);
} catch (Exception e) {   
    throw new ProgramInvocationException("Could not create the leader retrieval service.", e);
}

顾名思义,LeaderRetrievalService在Flink中提供查找主节点的服务。它会根据Flink的配置信息(主要是recovery.mode来判断基于哪种恢复机制来创建该服务。当前有两种模式:一种是Standalone的独立运行模式;另一种是基于Zookeeper的高可用模式)。Flink提供了一个称之为LeaderRetrievalListener的回调接口来获得主节点的信息。接下来,就是调用JobClientsubmitJobAndWait方法将产生的JobGraph以及主节点查找的服务对象等相关信息提交给JobManager并等待返回结果:

try {   
    this.lastJobID = jobGraph.getJobID();   
    return JobClient.submitJobAndWait(actorSystem, leaderRetrievalService, jobGraph, 
                                        timeout, printStatusDuringExecution, classLoader);
} catch (JobExecutionException e) {   
    throw new ProgramInvocationException("The program execution failed: " + e.getMessage(), e);
}

上面的submitJobAndWait方法的第一个参数actorSystemActorSystem的实例。在构造Client对象时创建,在Job提交并获得返回结果后通过调用Clientshutdown方法关闭:

public void shutdown() {   
    if (!this.actorSystem.isTerminated()) {      
        this.actorSystem.shutdown();      
        this.actorSystem.awaitTermination();   
    }
}

该方法的调用见上面executeRemotely方法的代码段的finally语句块。

JobClient的出现可能会让你产生疑惑——它跟Client是什么关系?作用是什么?下面这幅示意图可以用来解释这些疑问:

Client-JobClient-relationship

上面这幅图展示了Client对象与其他几个对象的关系。JobClient在其中起到了“桥接”作用,它在基于API的编程层面上桥接了同步的方法调用和异步的消息通信。更具体得说,JobClient可以看做是一个“静态类”提供了一些静态方法,这里我们主要关注上面的submitJobAndWait方法,该方法内部封装了Actor之间的异步通信(具体的通信对象是JobClientActor,它负责跟JobManagerActorSystemActor进行通信),并以阻塞的形式返回结果。而Client只需调用JobClient的这些方法,而无需关注其内部是如何实现的。

通过调用JobClient的静态方法submitJobAndWait,会触发基于AkkaActor之间的消息通信来完成后续的提交JobGraph的动作。JobClient提交Job的基于消息交互的抽象示意图如下:

JobClient-Actor-SubmitJobGraph

总体来说这里总共有两个ActorSystem,一个归属于Client,另一个归属于JobManager。在submitJobAndWait方法中,其首先会创建一个JobClientActorActorRef

ActorRef jobClientActor = actorSystem.actorOf(jobClientActorProps);

然后向其发起一个SubmitJobAndWait消息,该消息将JobGraph的实例提交给jobClientActor。该消息的发起模式是ask,它表示需要一个应答消息。

JobClient向JobClientActor发送消息的代码段如下所示:

Future<Object> future = Patterns.ask(jobClientActor,      
                                     new JobClientMessages.SubmitJobAndWait(jobGraph),      
                                     new Timeout(AkkaUtils.INF_TIMEOUT()));
answer = Await.result(future, AkkaUtils.INF_TIMEOUT());

JobClient会阻塞等待该future返回结果。在得到返回结果answer之后,先进行解析判断它是Job被成功执行返回的结果还是失败返回的结果。

小结

至此,Client提交Streaming Job的关键方法调用路径已梳理完成。这里为了突出主路线,同时避免被太多的实现细节干扰,我们暂时忽略了一些重要数据结构和关键概念的解读。不过,后续我们会对它们进行分析。




原文发布时间为:2016-07-17


本文作者:vinoYang


本文来自云栖社区合作伙伴CSDN博客,了解相关信息可以关注CSDN博客。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
2月前
|
SQL 存储 人工智能
Apache Flink 2.0.0: 实时数据处理的新纪元
Apache Flink 2.0.0 正式发布!这是自 Flink 1.0 发布九年以来的首次重大更新,凝聚了社区两年的努力。此版本引入分离式状态管理、物化表、流批统一等创新功能,优化云原生环境下的资源利用与性能表现,并强化了对人工智能工作流的支持。同时,Flink 2.0 对 API 和配置进行了全面清理,移除了过时组件,为未来的发展奠定了坚实基础。感谢 165 位贡献者的辛勤付出,共同推动实时计算进入新纪元!
343 1
Apache Flink 2.0.0: 实时数据处理的新纪元
|
2月前
|
存储 大数据 数据处理
您有一份 Apache Flink 社区年度报告请查收~
您有一份 Apache Flink 社区年度报告请查收~
|
5月前
|
存储 SQL 人工智能
Apache Flink 2.0:Streaming into the Future
本文整理自阿里云智能高级技术专家宋辛童、资深技术专家梅源和高级技术专家李麟在 Flink Forward Asia 2024 主会场的分享。三位专家详细介绍了 Flink 2.0 的四大技术方向:Streaming、Stream-Batch Unification、Streaming Lakehouse 和 AI。主要内容包括 Flink 2.0 的存算分离云原生化、流批一体的 Materialized Table、Flink 与 Paimon 的深度集成,以及 Flink 在 AI 领域的应用。
951 13
Apache Flink 2.0:Streaming into the Future
|
8月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
6月前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
2486 73
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
zdl
|
6月前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
288 56
|
4月前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
329 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
5月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
9月前
|
SQL 消息中间件 Kafka
实时计算 Flink版产品使用问题之如何在EMR-Flink的Flink SOL中针对source表单独设置并行度
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
8月前
|
人工智能 Apache 流计算
Flink Forward Asia 2024 上海站|探索实时计算新边界
Flink Forward Asia 2024 即将盛大开幕!11 月 29 至 30 日在上海举行,大会聚焦 Apache Flink 技术演进与未来规划,涵盖流式湖仓、流批一体、Data+AI 融合等前沿话题,提供近百场专业演讲。立即报名,共襄盛举!官网:https://asia.flink-forward.org/shanghai-2024/
1111 33
Flink Forward Asia 2024 上海站|探索实时计算新边界

推荐镜像

更多