【算法导论】动态规划之矩阵链乘法

简介:        所谓矩阵链乘法是指当一些矩阵相乘时,如何加括号来改变乘法顺序从而来降低乘法次数。例如有三个矩阵连乘:A1*A2*A3,其维数分别为:10*100,100*5,5*50.如果按照((A1*A2)*A3)来计算的话,求(A1*A2)要10*100*5=5000次乘法,再乘以A3需要10*5*50=2500次乘法,因此总共需要7500次乘法。

       所谓矩阵链乘法是指当一些矩阵相乘时,如何加括号来改变乘法顺序从而来降低乘法次数。例如有三个矩阵连乘:A1*A2*A3,其维数分别为:10*100,100*5,5*50.如果按照((A1*A2)*A3)来计算的话,求(A1*A2)要10*100*5=5000次乘法,再乘以A3需要10*5*50=2500次乘法,因此总共需要7500次乘法。如果按照(A1*(A2*A3))来计算的话,求(A2*A3)要100*5*50=25000次乘法,再乘以A1需要10*100*50=50000次乘法,因此总共需要75000次乘法。可见,按不同的顺序计算,代价相差很大。

        矩阵链乘法问题可以表述如下:给定n个矩阵构成的一个链(A1*A2*A3……*An),其中i=1,2,……n,矩阵Ai的维数为p(i-1)*p(i),对于乘积A1*A2*A3……*An以一种最小化标量乘法次数的方式进行加括号。

        解决这个问题,我们可以用穷举法,但是n很大时,这不是个好方法,其时间复杂度为指数形式。拿上面的例子来说,加括号后把矩阵链分成了两部分,计算代价为两者代价的和。因此假设这种方法的代价最少,则两个部分的代价也是最小的,如果不是最小的,那么这种方法就不是最优的,因此矩阵链乘法具有最优子结构。因此我们可以利用子问题的最优解来构造原问题的一个最优解。所以,可以把问题分割为两个子问题(A1*A2*A3……*Ak和A(k+1)*A(k+2)*A(k+3)……*An),需找子问题的最优解,然后合并这些问题的最优解。从下面的程序可以看出,其时间复杂度为n*n*n.

上面算法的实现程序如下:

#include<stdio.h>

void print_parens(int s[6][6],int i ,int j);//打印加括号的位置
void matrix_order(int *p,int n,int m[6][6],int s[6][6]);//计算最佳的加括号的方式
void main()
{
	int p[7]={30,35,15,5,10,20,25};//记录6个矩阵的行和列,注意相邻矩阵的行和列是相同的
	int m[6][6]={0};//存储第i个矩阵到第j个矩阵的计算代价(以乘法次数来表示)
	int s[6][6]={0};//存储第i个矩阵到第j个矩阵的最小代价时的分为两部分的位置
	int n=6;//矩阵个数
	matrix_order(p,n,m,s);
	printf("最终加括号的形式为: ");
	print_parens(s,0 ,5);//计算从第1个矩阵到第6个矩阵的最优加括号的方法
	printf("\n");
  
}
/****************************************************\
函数功能:计算最佳的加括号的方式,得到m和s矩阵
输入:    矩阵的行和列p,初始化的m和s矩阵
输出:    无
\****************************************************/
void matrix_order(int *p,int n,int m[6][6],int s[6][6])
{
	int q=0;
	int j=0;
	for(int i=0;i<n;i++)
		m[i][i]=0;
	for(int l=2;l<=n;l++)
		for(int i=0;i<n-l+1;i++)
		{
			j=i+l-1;
			m[i][j]=1000000;
			for(int k=i;k<j;k++)//在i,j中遍历每一个分割的位置
			{
				q=m[i][k]+m[k+1][j]+p[i]*p[k+1]*p[j+1];//计算代价
				if(q<m[i][j])
				{
					m[i][j]=q;
					s[i][j]=k;
				}

			}
		}
}


/****************************************************\
函数功能:打印加括号的位置
输入:    s矩阵,想要计算的矩阵链的起始和结尾位置
输出:    无
\****************************************************/
void print_parens(int s[6][6],int i ,int j)
{
	if(i==j)
		printf("A%d",i);
	else
	{
		printf("(");
		print_parens(s,i,s[i][j]);
		print_parens(s,s[i][j]+1,j);//递归调用
		printf(")");
	}
	
}

在上面程序的实现中,矩阵链的参数如下表:

matrix

dimension


A1

30 × 35

A2

35 × 15

A3

15 × 5

A4

5 × 10

A5

10 × 20

A6

20 × 25


表示第i个矩阵到第j个矩阵的计算代价矩阵m[i][j]和表示第i个矩阵到第j个矩阵的最小代价时的分为两部分的位置矩阵s[i][j]的结果如下图:



从上面左图的m矩阵可以看出任意第i个到第j个矩阵连乘的乘法次数。最终的加括号形式为:(A1(A2A3))((A4A5)A6)

用动态规划算法解矩阵链乘法问题需要时间为O(n^3),空间为O(n^2),这比采用穷举法的指数时间相比要有效的多。


原文:http://blog.csdn.net/tengweitw/article/details/16922431

作者:nineheadedbird


目录
相关文章
|
3月前
|
存储 算法
深入了解动态规划算法
深入了解动态规划算法
88 1
|
3月前
|
算法 测试技术 C++
【动态规划算法】蓝桥杯填充问题(C/C++)
【动态规划算法】蓝桥杯填充问题(C/C++)
|
6月前
|
算法 开发者 Python
惊呆了!Python算法设计与分析,分治法、贪心、动态规划...这些你都会了吗?不会?那还不快来学!
【7月更文挑战第10天】探索编程巅峰,算法至关重要。Python以其易读性成为学习算法的首选。分治法,如归并排序,将大问题拆解;贪心算法,如找零问题,每步求局部最优;动态规划,如斐波那契数列,利用子问题解。通过示例代码,理解并掌握这些算法,提升编程技能,面对挑战更加从容。动手实践,体验算法的神奇力量吧!
78 8
|
6月前
|
算法 Python
算法不再难!Python分治法、贪心、动态规划实战解析,轻松应对各种算法挑战!
【7月更文挑战第8天】掌握Python算法三剑客:分治、贪心、动态规划。分治如归并排序,将大问题拆解递归解决;贪心策略在每步选最优解,如高效找零;动态规划利用子问题解,避免重复计算,解决最长公共子序列问题。实例展示,助你轻松驾驭算法!**
79 3
|
2月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
67 2
|
3月前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
129 2
动态规划算法学习三:0-1背包问题
|
3月前
|
并行计算 算法 IDE
【灵码助力Cuda算法分析】分析共享内存的矩阵乘法优化
本文介绍了如何利用通义灵码在Visual Studio 2022中对基于CUDA的共享内存矩阵乘法优化代码进行深入分析。文章从整体程序结构入手,逐步深入到线程调度、矩阵分块、循环展开等关键细节,最后通过带入具体值的方式进一步解析复杂循环逻辑,展示了通义灵码在辅助理解和优化CUDA编程中的强大功能。
|
3月前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
86 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
3月前
|
算法
动态规划算法学习二:最长公共子序列
这篇文章介绍了如何使用动态规划算法解决最长公共子序列(LCS)问题,包括问题描述、最优子结构性质、状态表示、状态递归方程、计算最优值的方法,以及具体的代码实现。
200 0
动态规划算法学习二:最长公共子序列
|
3月前
|
存储 人工智能 算法
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)

热门文章

最新文章