【算法编程】过河问题

简介:     今天偶尔想到了过河问题。记得读小学六年级的时候第一次接触到这个问题--六个老虎过河问题(百度上有详细介绍,本文解决的是一个简单的问题,下一篇文章中将讨论该问题),当时都是从逻辑思维的方法得到正确的解决方法。
    今天偶尔想到了过河问题。记得读小学六年级的时候第一次接触到这个问题--六个老虎过河问题(百度上有详细介绍,本文解决的是一个简单的问题,下一篇文章中将讨论该问题),当时都是从逻辑思维的方法得到正确的解决方法。本文介绍了普遍适用该类问题的方法以及该方法的改进方法,下一篇文章将介绍问题的变型及解法。
向量法( 人、狗、鸡、米过河问题)
     问题描述:某人带狗 、鸡、米用船来过河,只有人会划船(好像是废话,后面问题我们还会假设动物也会划船),另外至多还能载一物,当人不在时,狗要吃鸡(有人可能会质疑:狗吃鸡?,但是我看到的是狗和猫都吃小鸡),鸡吃米。问 人、狗、鸡、米怎么过河?
     我们用一个向量来表示 人、狗、鸡、米所处的状态,例如:(1 1 1 1)表示 人、狗、鸡、米都在左岸,则对应的(0 0 0 0)表示 人、狗、鸡、米都在右岸。这些向量我们称为状态向量,但是由于问题的条件限制,有些状态是允许的,而有些状态是不允许的,例如(0 1 1 1)表示人不在左岸,显然是不允许的。我们可以穷举出所有允许的状态:
         (1 1 1 1)          (0 0 0 0)     
         (1 1 1 0)          (0 0 0 1)
         (1 1 0 1)          (0 0 1 0)
         (1 0 1 1)          (0 1 0 0)
         (1 0 1 0)          (0 1 0 1)
从上面的允许状态中,我们可以发现规律如下:
     当人在时(也就是第一位为1时),不能有相邻的0,例如(1 1 0 0)是不允许的
     当人不在时(也就是第一个为0时),不能有相邻的1 ,例如(0 1 1 0)是不允许的

     我们将船的一次运载也用向量表示,例如(1 1 0 0)表示人和狗在船上。由于只有人会划船,则允许的运算向量为:
         (1 1 0 0)          (1 0 1 0)          (1 0 0 1)          (1 0 0 0)
因此我们可以将一次过河过程看成是一个状态向量与一个运算向量的异或运算(模2加运算:1+1=0 1+0=1 0+0=0)。根据上述的向量法的描述,我们可以将问题简化成:将状态(1 1 1 1)经过奇数次与运算向量运算,变成状态为(0 0 0 0)的状态转移过程。下面是过河的图解过程
           开始状态                   船上状态                    结果状态
 1          (1 1 1 1)     ------>      (1 0 1 0)       ------>         (0 1 0 1)
 2        (0 1 0 1)      ------>      (1 0 0 0)       ------>       (1 1 0 1)
 3        (1 1 0 1)      ------>      (1 0 0 1)        ------>       (0 1 0 0)
 4        (0 1 0 0)      ------>      (1 0 1 0)      ------>      (1 1 1 0)
 5        (1 1 1 0)      ------>      (1 1 0 0)        ------>        (0 0 1 0)
 6        (0 0 1 0)      ------>      (1 0 0 0)      ------>      (1 0 1 0)
 7        (1 0 1 0)      ------>      (1 0 1 0)        ------>        (0 0 0 0)   
奇数次:去河对岸
偶数次:回河这边
注意事项:
    在第3次过河时,开始状态为(1 1 0 1),如果船上状态为(1 1 0 0),则结果状态为(0 0 0 1),然后经过船上状态(1 0 0 1),结果状态为(1 0 0 0),然后经过船上状态(1 0 0 0),就可以完成任务(总共5次过河)。但是这里存在问题:当 开始状态为(0 0 0 1),船上状态不可能为(1 0 0 1)。因为开始状态(0 0 0 1)表示只有米在左岸,船上状态(1 0 0 1)表示人和米在船上,这是不可能的!因此船上状态的选择是有限制的。奇数时,开始状态为1的位置,船上对应位置才可以为1;偶数时,开始状态为0的位置,船上对应的位置才可以为0.通俗的说:奇数时,是将有的东西运到河对岸,偶数时,是将河对岸的东西(河这边没有)运到河这边。这些数学的表述可能太麻烦,我举例说明:奇数时,当河这边只有人、狗、米,我们可以从选择人、狗上船或则人、米上船,而不能选择人、鸡上船(鸡在对岸);当偶数次数时,河这边是狗、河对岸则是人、鸡、米,我们可以人、鸡或则人、米回到河这边,而不能选择人、狗过河。
算法实现:
     上面的实现可用matlab或则c来实现。若用matlab来实现,则那些状态向量以及状态间的异或运算比较容易表示;若用c来实现,则用时较短。两者的难点在于 注意事项中的船上变量的选取问题。 因此这种方法不适合用计算机实现,在状态变量较少的情况下,我们可以直接用手工进行运算的方法来得到结果(大家可以试试)。

改进型算法 ---图论法
    算法思路:将10个状态向量用10个点表示,将这10个状态向量分别与可行的运算向量进行运算,如果结果向量仍为允许的状态向量,则两者间连一条线,从而构成了一个图的问题。我们的目标是找到一条可以从状态(1 1 1 1)到状态(0 0 0 0)的通路。下面是我运算得到的图:



注意:图中的标号用于表示对应的状态

具体算法实现如下
1、Dijkstra算法
#include<stdio.h>
#define M 20//边数
#define N 10//顶点数
#define MAX 10000
void Dijkstra(int v, int dist[][N],int D[N],int p[N],int s[N]) ;
int flag[N]={0};
int flag1=0;
int flag2=0;
typedef struct
{
    int startvex;
    int endvex;
    int length;
}edge;//边的结构体
edge T[M];
void main()
{
    int dist[N][N]={{0,MAX,MAX,MAX,MAX,1,MAX,MAX,MAX,MAX},//图的邻接矩阵
                    {MAX,0,MAX,MAX,MAX,MAX,1,1,MAX,MAX},
                    {MAX,MAX,0,MAX,MAX,1,1,MAX,1,MAX},
                    {MAX,MAX,MAX,0,MAX,MAX,MAX,1,1,MAX},
                    {MAX,MAX,MAX,MAX,0,MAX,MAX,1,MAX,1},
                    {1,MAX,1,MAX,MAX,0,MAX,MAX,MAX,MAX},
                    {MAX,1,1,MAX,MAX,MAX,0,MAX,MAX,MAX},
                    {MAX,1,MAX,1,1,MAX,MAX,0,MAX,MAX},
                    {MAX,MAX,1,1,MAX,MAX,MAX,MAX,0,MAX},
                    {MAX,MAX,MAX,MAX,1,MAX,MAX,MAX,MAX,0}
    };
    int D[N]={0};
    int p[N]={0};
    int s[N]={0};
    int num=0;
    Dijkstra(0,dist,D, p,s) ;//0表示从状态(1111)开始
}
 void Dijkstra(int v, int dist[][N],int D[N],int p[N],int s[N]) 
 {     int i, j, k, v1, min, max=10000, pre;     /* Max中的值用以表示dist矩阵中的值*/
    v1=v; 
    for( i=0; i<N; i++)              /* 各数组进行初始化*/
    {    D[i]=dist[v1][i]; 
        if( D[i] != MAX )  p[i]= v1+1; 
        else p[i]=0; 
        s[i]=0; 
    }
    s[v1]=1;                          /* 将源点送U */
      for( i=0; i<N-1; i++)      /* 求源点到其余顶点的最短距离*/
    {    min=10001;    /* min>max, 以保证值为的的的的顶顶顶顶点点点点也也也也能能能能加加加加入入入入U */
        for( j=0; j<N-1; j++)
              if ( ( !s[j] )&&(D[j]<min) )          /* 找出到源点具有最短距离的边*/
                  {min=D[j]; 
                        k=j; 
                     }
                s[k]=1;  /* 将找到的顶点k送入U */    
    for(j=0; j<N; j++)
     if ( (!s[j])&&(D[j]>D[k]+dist[k][j]) ) /* 调整V-U中各顶点的距离值*/
        {D[j]=D[k]+dist[k][j]; 
        p[j]=k+1;                      /* k是j的前趋*/
                }
            }                               /*  所有顶点已扩充到U中*/
            for( i=0; i<N; i++)
            {
                printf(" %d : %d ", D[i], i);
                pre=p[i]; 
            while ((pre!=0)&&(pre!=v+1))
            {    printf ("<- %d ", pre-1); 
                pre=p[pre-1]; 
            }
            printf("<-%d \n", v); 
        }
}     

结果显示如下:

从上图的第七行可知,从标号为1的状态到标号为10的状态所要经过的过程为(数组下标是从0开始的):
    1---6---3---7---2---8---5---10
    
2、通过每对顶点之间的最短路径算法实现:
#include<stdio.h>
#define N 10 //顶点个数
#define MAX 10000
void Floyd(int dist[N][N],int A[N][N],int path[N][N])
{
    for(int i=0;i<N;i++)
        for(int j=0;j<N;j++)
            for(int k=0;k<N;k++)
            {
                /*if(A[i][j]>(A[i][k]+dist[k][j]))//方法一:计算每一次矩阵
                {
                    A[i][j]=(A[i][k]+dist[k][j]);
                    path[i][j]=path[k][j];
                }*/
                if(A[i][j]>(A[i][k]+A[k][j]))//方法二:计算的幂次矩阵
                {
                    A[i][j]=(A[i][k]+A[k][j]);
                    path[i][j]=path[k][j];
                }
            }
}
void main()
{
    int dist[N][N]={{0,MAX,MAX,MAX,MAX,1,MAX,MAX,MAX,MAX},//图的邻接矩阵
                    {MAX,0,MAX,MAX,MAX,MAX,1,1,MAX,MAX},
                    {MAX,MAX,0,MAX,MAX,1,1,MAX,1,MAX},
                    {MAX,MAX,MAX,0,MAX,MAX,MAX,1,1,MAX},
                    {MAX,MAX,MAX,MAX,0,MAX,MAX,1,MAX,1},
                    {1,MAX,1,MAX,MAX,0,MAX,MAX,MAX,MAX},
                    {MAX,1,1,MAX,MAX,MAX,0,MAX,MAX,MAX},
                    {MAX,1,MAX,1,1,MAX,MAX,0,MAX,MAX},
                    {MAX,MAX,1,1,MAX,MAX,MAX,MAX,0,MAX},
                    {MAX,MAX,MAX,MAX,1,MAX,MAX,MAX,MAX,0}
    };
    int A[N][N];
    int path[N][N]={0};//给出两顶点间的路径
    int pre=0;
    for(int i=0;i<N;i++)
        for(int j=0;j<N;j++)
        {
            A[i][j]=dist[i][j];
            if(dist[i][j]!=MAX)
                path[i][j]=i+1;
            else
                path[i][j]=0;
        }
    
    for(int k=0;k<7;k++)//若用方法一,需循环N-3次,若用方法二,需要循环lg(N-1)次
        Floyd(dist,A,path);
    printf("每对顶点间的最短路径矩阵为:\n");
    for(int i=0;i<N;i++)
    {
        for(int j=0;j<N;j++)
            printf("%d ",A[i][j]);
        printf("\n");
    }
    printf("\n每对顶点的具体最短路径为:\n");
    
    for(int i=0;i<N;i++)
    {
        for(int j=0;j<N;j++)
        {
            printf("%d: %d ",A[i][j],j+1);
        pre=path[i][j];
        while((pre!=0)&&(pre!=i+1))
        {
            printf("<- %d ",pre);
            pre=path[i][pre-1];
        }
        printf(" <- %d\n",i+1);
        }
    }
}

结果显示如下:


从上图的最短路径矩阵的第一行第10列可知,从状态1到状态10需要7步,从具体最短路径的第10行可知, 所要经过的过程为:
    1---6---3---7---2---8---5---10

两种方法求得的结果相同,我们可以用图形象的表示如下:



通过对比可以发现,图论法实质是在向量法的基础上进行改进的算法,无论是在手动计算还是计算机实现上都比向量法更好。

目录
相关文章
|
7月前
|
算法 数据安全/隐私保护
火山中文编程 -- MD5算法和SHA算法
火山中文编程 -- MD5算法和SHA算法
55 0
火山中文编程 -- MD5算法和SHA算法
|
18天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
32 2
|
2月前
|
存储 缓存 分布式计算
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
这篇文章是关于数据结构与算法的学习指南,涵盖了数据结构的分类、数据结构与算法的关系、实际编程中遇到的问题以及几个经典的算法面试题。
35 0
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
|
2月前
|
算法 Python
Python算法编程:冒泡排序、选择排序、快速排序
Python算法编程:冒泡排序、选择排序、快速排序
|
7月前
|
存储 分布式计算 算法
【底层服务/编程功底系列】「大数据算法体系」带你深入分析MapReduce算法 — Shuffle的执行过程
【底层服务/编程功底系列】「大数据算法体系」带你深入分析MapReduce算法 — Shuffle的执行过程
98 0
|
4月前
|
存储 算法 搜索推荐
编程之旅中的算法启示
【8月更文挑战第31天】在编程世界的迷宫里,算法是那把钥匙,它不仅能解锁问题的答案,还能引领我们深入理解计算机科学的灵魂。本文将通过一次个人的技术感悟旅程,探索算法的奥秘,分享如何通过实践和思考来提升编程技能,以及这一过程如何启示我们更深层次地认识技术与生活的交织。
|
5月前
|
存储 算法 搜索推荐
告别低效编程!Python算法设计与分析中,时间复杂度与空间复杂度的智慧抉择!
【7月更文挑战第22天】在编程中,时间复杂度和空间复杂度是评估算法效率的关键。时间复杂度衡量执行时间随数据量增加的趋势,空间复杂度关注算法所需的内存。在实际应用中,开发者需权衡两者,根据场景选择合适算法,如快速排序(平均O(n log n),最坏O(n^2),空间复杂度O(log n)至O(n))适合大规模数据,而归并排序(稳定O(n log n),空间复杂度O(n))在内存受限或稳定性要求高时更有利。通过优化,如改进基准选择或减少复制,可平衡这两者。理解并智慧地选择算法是提升代码效率的关键。
71 1
|
4月前
|
存储 算法
【C算法】编程初学者入门训练140道(1~20)
【C算法】编程初学者入门训练140道(1~20)
|
5月前
|
存储 算法 Python
震撼!Python算法设计与分析,分治法、贪心、动态规划...这些经典算法如何改变你的编程世界!
【7月更文挑战第9天】在Python的算法天地,分治、贪心、动态规划三巨头揭示了解题的智慧。分治如归并排序,将大问题拆解为小部分解决;贪心算法以局部最优求全局,如Prim的最小生成树;动态规划通过存储子问题解避免重复计算,如斐波那契数列。掌握这些,将重塑你的编程思维,点亮技术之路。
75 1
|
6月前
|
机器学习/深度学习 算法 搜索推荐
编程之舞:探索算法的优雅与力量
【6月更文挑战第10天】在软件的世界里,算法是构筑数字宇宙的基石。它们如同精心编排的舞蹈,每一个步骤都充满着逻辑的美感和解决问题的力量。本文将带领读者走进算法的世界,一起感受那些精妙绝伦的编程思想如何转化为解决现实问题的钥匙。
34 3
下一篇
无影云桌面