从零开始码一个皮卡丘检测器-CNN目标检测入门教程(下)

简介: 目标检测不同于分类任务,需要考虑的不只是全图尺度的单一分类,而是需要检测到不同大小,不同位置的物体,难度自然提升了许多,用扫窗之类的传统方法早已不适合神经网络这种需要大量计算需求的新结构。幸好我们可以用本章节介绍的方法,利用卷积网络的特性,一次推导得到全部的预测结果,相对来说快速且准确。

本文作者Zhreshold,原文载于其知乎主页,雷锋网(公众号:雷锋网(公众号:雷锋网))获其授权发布。

本文为大家介绍实验过程中训练、测试过程及结果。算法和数据集参见《从零开始码一个皮卡丘检测器-CNN目标检测入门教程(上)》

训练 Train

损失函数 Losses

通过定义损失函数,我们可以让网络收敛到我们希望得到的目标检测功能,也就是说,我们希望网络能正确预测物体的类别,同时能预测出准确的预设框偏移量,以正确地显示物体的真正大小和位置。

这个预测的类别和偏移量都是可以通过真实标签和网络的当前预测值得到,在这里我们用MultiBoxTarget层来计算,其中包含了预测框和真实标签的匹配,正类和负类的选择,就不一一详述了。(详情见论文 SSD: Single Shot MultiBox Detector)。

from mxnet.contrib.ndarray import MultiBoxTarget

def training_targets(default_anchors, class_predicts, labels):
   class_predicts = nd.transpose(class_predicts, axes=(0, 2, 1))
   z = MultiBoxTarget(*[default_anchors, labels, class_predicts])
   box_target = z[0]  # 预设框偏移量 (x, y, width, height)
   box_mask = z[1]  # box_mask用来把负类的偏移量置零,因为背景不需要位置!
   cls_target = z[2]  # 每个预设框应该对应的分类
   return box_target, box_mask, cls_target

gluon.loss中有很多预设的损失函数可以选择,当然我们也可以快速地手写一些损失函数。

首先,对于物体分类的概率,平时我们往往用交叉墒,不过在目标检测中,我们有大量非平衡的负类(背景),那么 Focal Loss会是一个很好的选择(详情见论文 Focal Loss for Dense Object Detection)。

class FocalLoss(gluon.loss.Loss):
   def __init__(self, axis=-1, alpha=0.25, gamma=2, batch_axis=0, **kwargs):
       super(FocalLoss, self).__init__(None, batch_axis, **kwargs)
       self._axis = axis
       self._alpha = alpha
       self._gamma = gamma

   def hybrid_forward(self, F, output, label):
       output = F.softmax(output)
       pt = F.pick(output, label, axis=self._axis, keepdims=True)
       loss = -self._alpha * ((1 - pt) ** self._gamma) * F.log(pt)
       return F.mean(loss, axis=self._batch_axis, exclude=True)


# cls_loss = gluon.loss.SoftmaxCrossEntropyLoss()

cls_loss = FocalLoss()

print(cls_loss)

FocalLoss(batch_axis=0, w=None)

接下来是一个流行的 SmoothL1 损失函数,用来惩罚不准确的预设框偏移量。

class SmoothL1Loss(gluon.loss.Loss):
   def __init__(self, batch_axis=0, **kwargs):
       super(SmoothL1Loss, self).__init__(None, batch_axis, **kwargs)

   def hybrid_forward(self, F, output, label, mask):
       loss = F.smooth_l1((output - label) * mask, scalar=1.0)
       return F.mean(loss, self._batch_axis, exclude=True)


box_loss = SmoothL1Loss()

print(box_loss)

SmoothL1Loss(batch_axis=0, w=None)

衡量性能指标 Evaluate metrics

我们在训练时需要一些指标来衡量训练是否顺利,我们这里用准确率衡量分类的性能,用平均绝对误差衡量偏移量的预测能力。这些指标对网络本身没有任何影响,只是用于观测。

cls_metric = mx.metric.Accuracy()

box_metric = mx.metric.MAE()  # measure absolute difference between prediction and target

选择训练用的设备 Set context for training

ctx = mx.gpu()  # 用GPU加速训练过程

try:
   _ = nd.zeros(1, ctx=ctx)
   # 为了更有效率,cuda实现需要少量的填充,不影响结果
   train_data.reshape(label_shape=(3, 5))
   train_data = test_data.sync_label_shape(train_data)

except mx.base.MXNetError as err:
   # 没有gpu也没关系,交给cpu慢慢跑
   print('No GPU enabled, fall back to CPU, sit back and be patient...')
   ctx = mx.cpu()

初始化网络参数 Initialize parameters

net=ToySSD(num_class)

net.initialize(mx.init.Xavier(magnitude=2),ctx=ctx)

用gluon.Trainer简化训练过程 Set up trainer

gluon.Trainer能简化优化网络参数的过程,免去对各个参数单独更新的痛苦。

net.collect_params().reset_ctx(ctx)

trainer=gluon.Trainer(net.collect_params(),'sgd',{'learning_rate':0.1,'wd':5e-4})

开始训练 Start training

既然是简单的示例,我们不想花费太多的时间来训练网络,所以会预加载训练过一段时间的网络参数继续训练。

如果你感兴趣的话,可以设置

from_scratch=True

这样网络就会从初始的随机参数开始训练。

一般从头训练用单个gpu会花费半个多小时。

epochs = 150  # 设大一点的值来得到更好的结果

log_interval = 20

from_scratch = False  # 设为True就可以从头开始训练

if from_scratch:
   start_epoch = 0

else:
   start_epoch = 148
   pretrained = 'ssd_pretrained.params'
   sha1 = 'fbb7d872d76355fff1790d864c2238decdb452bc'
   url = 'https://apache-mxnet.s3-accelerate.amazonaws.com/gluon/models/ssd_pikachu-fbb7d872.params'
   if not osp.exists(pretrained) or not verified(pretrained, sha1):
       print('Downloading', pretrained, url)
       download(url, fname=pretrained, overwrite=True)
   net.load_params(pretrained, ctx)

喝咖啡的时间

import time

from mxnet import autograd as ag

for epoch in range(start_epoch, epochs):
   # 重置iterator和时间戳
   train_data.reset()
   cls_metric.reset()
   box_metric.reset()
   tic = time.time()
   # 迭代每一个批次
   for i, batch in enumerate(train_data):
       btic = time.time()
       # 用autograd.record记录需要计算的梯度
       with ag.record():
           x = batch.data[0].as_in_context(ctx)
           y = batch.label[0].as_in_context(ctx)
           default_anchors, class_predictions, box_predictions = net(x)
           box_target, box_mask, cls_target = training_targets(default_anchors, class_predictions, y)
           # 损失函数计算
           loss1 = cls_loss(class_predictions, cls_target)
           loss2 = box_loss(box_predictions, box_target, box_mask)
           # 1比1叠加两个损失函数,也可以加权重
           loss = loss1 + loss2
           # 反向推导
           loss.backward()
       # 用trainer更新网络参数
       trainer.step(batch_size)
       # 更新下衡量的指标
       cls_metric.update([cls_target], [nd.transpose(class_predictions, (0, 2, 1))])
       box_metric.update([box_target], [box_predictions * box_mask])
       if (i + 1) % log_interval == 0:
           name1, val1 = cls_metric.get()
           name2, val2 = box_metric.get()
           print('[Epoch %d Batch %d] speed: %f samples/s, training: %s=%f, %s=%f'
                 %(epoch ,i, batch_size/(time.time()-btic), name1, val1, name2, val2))

   # 打印整个epoch的的指标
   name1, val1 = cls_metric.get()
   name2, val2 = box_metric.get()
   print('[Epoch %d] training: %s=%f, %s=%f'%(epoch, name1, val1, name2, val2))
   print('[Epoch %d] time cost: %f'%(epoch, time.time()-tic))


# 还可以把网络的参数存下来以便下次再用

net.save_params('ssd_%d.params' % epochs)

[Epoch 148 Batch 19] speed: 109.217423 samples/s, training: accuracy=0.997539, mae=0.001862
[Epoch 148] training: accuracy=0.997610, mae=0.001806
[Epoch 148] time cost: 17.762958
[Epoch 149 Batch 19] speed: 110.492729 samples/s, training: accuracy=0.997607, mae=0.001824
[Epoch 149] training: accuracy=0.997692, mae=0.001789
[Epoch 149] time cost: 15.353258

测试 Test

接下来就是  从零开始码一个皮卡丘检测器-CNN目标检测入门教程(下) 的时刻,我们用训练好的网络来测试一张图片。

网络推导的过程和训练很相似,只不过我们不再需要计算真值和损失函数,也不再需要更新网络的参数,一次推导就可以得到结果。

准备测试数据 Prepare the test data

我们需要读取一张图片,稍微调整到网络需要的结构,比如说我们需要调整图片通道的顺序,减去平均值等等惯用的方法。

import numpy as np

import cv2

def preprocess(image):
   """Takes an image and apply preprocess"""
   # 调整图片大小成网络的输入
   image = cv2.resize(image, (data_shape, data_shape))
   # 转换 BGR 到 RGB
   image = image[:, :, (2, 1, 0)]
   # 减mean之前先转成float
   image = image.astype(np.float32)
   # 减 mean
   image -= np.array([123, 117, 104])
   # 调成为 [batch-channel-height-width]
   image = np.transpose(image, (2, 0, 1))
   image = image[np.newaxis, :]
   # 转成 ndarray
   image = nd.array(image)
   return image


image = cv2.imread('img/pikachu.jpg')

x = preprocess(image)

print('x', x.shape)

x (1, 3, 256, 256)

网络推导 Network inference

只要一行代码,输入处理完的图片,输出我们要的所有预测值和预设框。

# 如果有预先训练好的网络参数,可以直接加载

# net.load_params('ssd_%d.params' % epochs, ctx)

anchors, cls_preds, box_preds = net(x.as_in_context(ctx))

print('anchors', anchors)

print('class predictions', cls_preds)

print('box delta predictions', box_preds)

anchors
[[[-0.084375 -0.084375 0.115625 0.115625 ]
[-0.12037501 -0.12037501 0.15162501 0.15162501]
[-0.12579636 -0.05508568 0.15704636 0.08633568]
...,
[ 0.01949999 0.01949999 0.98049998 0.98049998]
[-0.12225395 0.18887302 1.12225389 0.81112695]
[ 0.18887302 -0.12225395 0.81112695 1.12225389]]]
<NDArray 1x5444x4 @gpu(0)>
class predictions
[[[ 0.33754104 -1.64660323]
[ 1.15297699 -1.77257478]
[ 1.1535604 -0.98352218]
...,
[-0.27562004 -1.29400492]
[ 0.45524898 -0.88782215]
[ 0.20327765 -0.94481993]]]
<NDArray 1x5444x2 @gpu(0)>
box delta predictions
[[-0.16735925 -0.13083346 -0.68860865 ..., -0.18972112 0.11822788
-0.27067867]]
<NDArray 1x21776 @gpu(0)>

是不是看着还很奇怪,别着急,还差最后一步

转换为可读的输出 Convert predictions to real object detection results

要把网络输出转换成我们需要的坐标,还要最后一步,比如我们需要softmax把分类预测转换成概率,还需要把偏移量和预设框结合来得到物体的大小和位置。

非极大抑制(Non-Maximum Suppression)也是必要的一步,因为一个物体往往有不只一个检测框。

from mxnet.contrib.ndarray import MultiBoxDetection

# 跑一下softmax, 转成0-1的概率

cls_probs = nd.SoftmaxActivation(nd.transpose(cls_preds, (0, 2, 1)), mode='channel')

# 把偏移量加到预设框上,去掉得分很低的,跑一遍nms,得到最终的结果

output = MultiBoxDetection(*[cls_probs, box_preds, anchors], force_suppress=True, clip=False)

print(output)

[[[ 0. 0.61178613 0.51807499 0.5042429 0.67325425 0.70118797]
[-1. 0.59466797 0.52491206 0.50917625 0.66228026 0.70489514]
[-1. 0.5731774 0.53843218 0.50217044 0.66522425 0.7118448 ]
...,
[-1. -1. -1. -1. -1. -1. ]
[-1. -1. -1. -1. -1. -1. ]
[-1. -1. -1. -1. -1. -1. ]]]
<NDArray 1x5444x6 @gpu(0)>

结果中,每一行都是一个可能的结果框,表示为[类别id, 得分, 左边界,上边界,右边界,下边界],有很多-1的原因是网络预测到这些都是背景,或者作为被抑制的结果。

显示结果 Display results

数字永远不如图片来得直观

把得到的转换结果画在图上,就得到我们期待已久的几十万伏特图了!

def display(img, out, thresh=0.5):
   import random
   import matplotlib as mpl
   mpl.rcParams['figure.figsize'] = (10,10)
   pens = dict()
   plt.clf()
   plt.imshow(img)
   for det in out:
       cid = int(det[0])
       if cid < 0:
           continue
       score = det[1]
       if score < thresh:
           continue
       if cid not in pens:
           pens[cid] = (random.random(), random.random(), random.random())
       scales = [img.shape[1], img.shape[0]] * 2
       xmin, ymin, xmax, ymax = [int(p * s) for p, s in zip(det[2:6].tolist(), scales)]
       rect = plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False,
                            edgecolor=pens[cid], linewidth=3)
       plt.gca().add_patch(rect)
       text = class_names[cid]
       plt.gca().text(xmin, ymin-2, '{:s} {:.3f}'.format(text, score),
                      bbox=dict(facecolor=pens[cid], alpha=0.5),
                      fontsize=12, color='white')
   plt.show()


display(image[:, :, (2, 1, 0)], output[0].asnumpy(), thresh=0.45)

从零开始码一个皮卡丘检测器-CNN目标检测入门教程(下)

小结 Conclusion

目标检测不同于分类任务,需要考虑的不只是全图尺度的单一分类,而是需要检测到不同大小,不同位置的物体,难度自然提升了许多,用扫窗之类的传统方法早已不适合神经网络这种需要大量计算需求的新结构。幸好我们可以用本章节介绍的方法,利用卷积网络的特性,一次推导得到全部的预测结果,相对来说快速且准确。

我们希望能用较短的篇幅来描述一个足够简单的过程,但是难免会有疏漏,欢迎各种问题和建议,与此同时,我们会不断更新教程,并且会带来更多不同的算法,敬请期待。



本文作者:Non
本文转自雷锋网禁止二次转载,原文链接
相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
相关文章
|
机器学习/深度学习 固态存储 算法
从零开始码一个皮卡丘检测器-CNN目标检测入门教程(上)
跟所有的图像相关的网络一样,我们需要一个主干网络来提取特征,同时也是作为第一个预测特征层。网络在当前层产生大量的预设框,和与之对应的每个方框的分类概率(背景,猫,狗等等)以及真正的物体和预设框的偏移量。
1243 0
|
2月前
|
机器学习/深度学习 计算机视觉 网络架构
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
纵观近年的顶会论文和研究热点,我们不得不承认一个现实:CNN相关的研究论文正在减少,曾经的"主角"似乎正逐渐淡出研究者的视野。
107 11
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
355 7
|
2月前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
72 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
2月前
|
机器学习/深度学习 人工智能 网络架构
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
64 1
|
2月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【10月更文挑战第41天】在人工智能的璀璨星空下,卷积神经网络(CNN)如一颗耀眼的新星,照亮了图像处理和视觉识别的路径。本文将深入浅出地介绍CNN的基本概念、核心结构和工作原理,同时提供代码示例,带领初学者轻松步入这一神秘而又充满无限可能的领域。

热门文章

最新文章

下一篇
开通oss服务