POLARDB云数据库分布式存储引擎揭秘

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
RDS AI 助手,专业版
简介: 2017云栖大会POLARDB专场,阿里云资深技术专家曹伟带来POLARDB云数据库分布式存储引擎揭秘的演讲。本文主要从计算和存储分离的优势谈起,然后说明控制平面与数据平面分离,接着分享了划时代的技术,包括零拷贝、并行副本等,最后解释了面向数据库优化的智能存储。

2017云栖大会POLARDB专场,阿里云资深技术专家曹伟带来POLARDB云数据库分布式存储引擎揭秘的演讲。本文主要从计算和存储分离的优势谈起,然后说明控制平面与数据平面分离,接着分享了划时代的技术,包括零拷贝、并行副本等,最后解释了面向数据库优化的智能存储。

以下是精彩内容整理:

 

计算和存储分离的优势

如何把过去MySQL从单机磁盘数据库,演进成基于共享存储、集成数据库的核心组建Polar store。我们把三副本分布式的存储系统,做得延迟和本地SSD磁盘一样快,这就是核心的武器。那么,我们怎么做一个又快又稳定的分布式存储系统。

为什么做POLARDB时会选择把MySQL本地SSD单机数据库改造成一个基于共享存储集成数据库,在做了七年RDS之后选择做这件事。怎么去做一个高性能的分布式存储系统,同时让它稳定,我们为什么不用已有分布式存储系统,因为我们要在稳定系统和存储系统当中加入对数据库的理解优化,让它成为一个为数据库定制和优化的智能存储。

我们过去单机做数据库有一个很头疼的问题,怎么先做容量的预测,每台机器SSD容量的预测和迁移。在“双11”之前,我们一般会把核心用户的机器、数据库打散操作,把每个用户买每台数据库容量降低到60%以下,我们很担心“双11”那天大量数据进来,把机器塞满之后弄不出去。我需要预留40%-50%的SSD容量在那儿放着,存不了数据,就是为了避免突然的流量高峰把机器用满了,然后就要开始做迁移。

存储池化

在存储池化之后,我能用好每一块盘,为什么呢?因为今天的池子不再是单机十几T、几T,拥有的是几PB的大池子。在大池子当中加机器就OK了,整个大池子可以保持85%,90%左右。把存储池化之后,我们有一个大盘子了,就能把资源用得更好,TCO会下降。

计算存储硬件分离优化

过去做数据库的时候,每年很头疼的一件事情是定义明年新机型是什么,内存和存储的平易怎么控制,权衡之间的比例一直是很头疼的事情。

当我把计算的机型、数据库机型和存储机型分离之后,就能很好的进行优化。数据库的机型不需要再带SSD,存储机型不需要很好的CPU,也不需要很大的内存,但会有很多盘,单机存储力度可以很高。

数据库快速迁移能力

没有不坏的硬件,包括供电、机器、风扇、温度,硬件坏了之后,我们怎么把恢复时间指标往下降,保证用户可用时间往上走。在机器坏了的时候怎么能快速恢复,把数据库弄到一个好的机器上去跑,这个能力很重要,RDS的SLA是99.95%,这个时间很难保证。今天一份存储的成本给多个数据库节点也是我们获得的关键能力。

软件定义存储能力更强

为什么过去不这么做呢?过去分布式存储太慢,分布式存储都还停留在HTD的延时,你得到的延迟是几个毫秒,我们接受不了。因为数据库是非常敏感的。软件定义存储和普通机器上硬件SSD相比拥有更强的能力,比如单个盘可以任意扩容,可以从10TB扩容到100TB,100TB对于本级SSD来说很难达到,因为SSD的制造工艺也有瓶颈,能够放下的颗粒也是有限的,随机而来的单机SSD密度是有限的。

还有数据快照技术,我们在存储引入了分布式数据库快照技术做数据库的备份,完美解决了数据库备份。我可以在5分钟之内对100T数据库完成备份,还可以一个备份在5分钟之内挂载上去,成为一个新的实例,这些技术用传统的单机数据库是无法解决的。我们今天存储层做了一个Thin-provisioning技术,按需分配,拥有它后,有可能就可以按你使用的存储资源付钱了。

 

控制平面与数据平面分离

26bb0980c8a1af48eb1761c8b6cc399bd24d3289

这样一个强大的分布式存储系统是怎么构建的呢?我们借鉴了SDN的经验,用控制平面与数据平面分离的思想在设计系统。简单来说,存储所有的复杂逻辑,比如故障怎么处理,副本策略如何,全都会在微服务实现的控制集群当中,数据平面非常高效的实现。

 

划时代技术,超高性能、超低延迟

5e18bcfd57a46403305ae92af89b35154ea85887

我们一些核心技术点如图,首先直接操作裸的RDMA网卡,自己实现一套完整网络协议栈和OR协议栈。零拷贝技术RDMA&SPDK、用户态文件系统和并行同步技术,我们紧贴着RDMA,在RDMA网络栈基础上实现了ParallelRaft。

我们是真正的零拷贝,别人的不是零拷贝。当RDMA网卡收到请求之后,会直接把请求操作写到物理机内存地址上去,直接用了很大的区域做这件事。网卡一旦写入内存之后,这个内存就一直使用下去,永远不拷贝,这就是零拷贝。启动系统时会把物理内存注册到网卡当中去,网卡会直接操作物理内存到CPU说知道有这个物理内存到了之后,我们就一直拿物理内存用DMA发给磁盘,用RDMA再发给远程网卡一直使用下去,再也没有拷贝过了。这件事情如果不是自己写RO协议栈或者网络协议栈不可能办到。

af418c1301587288538f65ecaa437f498cbba791

POLARDB当中使用的文件系统是PolarFS文件系统。这个文件系统是一个libpfs形式直接嵌入到数据库当中,数据库拿着lib操作后面的存储。也会在文件系统内部维护,让整个硬件在最合理的模式下工作,这是我们的设计思想。

ParallelRaft并行副本技术是传统的复制协议。我们的思路就是乱序带来并发,乱序带来极高的性能,乱序做正确就是我们的挑战,提出了一套专业的ParallelRaft技术解决这个问题。

 

面向数据库优化的智能存储

面向数据库优化的智能存储,包括防止DB脑裂写坏数据、Group Commit批量I/O写入优化、保证Page原子写入,避免doubleWrite开销、RedoLog高优先级写入。数据库的配置是大于10k的,一个16kb的页面如果出现部分显示成功,部分显示失败,就会出现数据损坏。

MySQL当中怎么做呢,它是用了DoubleWrite的方法做,先写到一个正确的地方,然后再放回来。相当于I/O带宽高了2倍,我们支持Page原子写入。脑裂问题,假如两个节点,一个在杭州,一个在上海。杭州和上海之间网络断开之后,两个节点都认为自己是主节点,一般做法是一主一备,两个节点都会写坏数据。我们通常做法是一定要写进去合并,再恢复到单机状态。我们在Polar store当中对数据库做了写保护,防止DB写入时脑裂,假如出现脑裂,存储借助三副本技术,可以随时授权进行仲裁,只保证一个人写的。

 

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍如何基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
相关文章
|
6月前
|
关系型数据库 分布式数据库 数据库
|
6月前
|
存储 关系型数据库 分布式数据库
喜报|阿里云PolarDB数据库(分布式版)荣获国内首台(套)产品奖项
阿里云PolarDB数据库管理软件(分布式版)荣获「2024年度国内首版次软件」称号,并跻身《2024年度浙江省首台(套)推广应用典型案例》。
|
7月前
|
关系型数据库 分布式数据库 数据库
再获殊荣,阿里云PolarDB数据库蝉联SIGMOD最佳论文奖
内存池化技术新突破,阿里云PolarDB蝉联SIGMOD最佳论文奖
|
4月前
|
Cloud Native 关系型数据库 MySQL
免费体验!高效实现自建 MySQL 数据库平滑迁移至 PolarDB-X
PolarDB-X 是阿里云推出的云原生分布式数据库,支持PB级存储扩展、高并发访问与数据强一致,助力企业实现MySQL平滑迁移。现已开放免费体验,点击即享高效、稳定的数据库升级方案。
免费体验!高效实现自建 MySQL 数据库平滑迁移至 PolarDB-X
|
3月前
|
消息中间件 分布式计算 资源调度
《聊聊分布式》ZooKeeper与ZAB协议:分布式协调的核心引擎
ZooKeeper是一个开源的分布式协调服务,基于ZAB协议实现数据一致性,提供分布式锁、配置管理、领导者选举等核心功能,具有高可用、强一致和简单易用的特点,广泛应用于Kafka、Hadoop等大型分布式系统中。
|
4月前
|
关系型数据库 MySQL 分布式数据库
阿里云PolarDB云原生数据库收费价格:MySQL和PostgreSQL详细介绍
阿里云PolarDB兼容MySQL、PostgreSQL及Oracle语法,支持集中式与分布式架构。标准版2核4G年费1116元起,企业版最高性能达4核16G,支持HTAP与多级高可用,广泛应用于金融、政务、互联网等领域,TCO成本降低50%。
|
7月前
|
存储 监控 关系型数据库
突破IO瓶颈:PolarDB分布式并行查询(Parallel Query)深度调优手册
在海量数据处理中,I/O瓶颈严重制约数据库性能。本文基于PolarDB MySQL 8.0.32版本,深入解析分布式并行查询技术如何提升CPU利用率至86.7%、IO吞吐达8.5GB/s,并结合20+实战案例,系统讲解并行架构、执行计划优化、资源调优与故障排查方法,助力实现高性能数据分析。
266 6
|
6月前
|
关系型数据库 分布式数据库 数据库
阿里云PolarDB数据库蝉联SIGMOD最佳论文奖
阿里云PolarDB凭借全球首创基于CXL Switch的分布式内存池技术,在SIGMOD 2025上荣获工业赛道“最佳论文奖”,连续两年蝉联该顶会最高奖项。其创新架构PolarCXLMem打破传统RDMA技术瓶颈,性能提升2.1倍,并已落地应用于内存池化场景,推动大模型推理与多模态存储发展,展现CXL Switch在高速互联中的巨大潜力。
阿里云PolarDB数据库蝉联SIGMOD最佳论文奖
|
6月前
|
人工智能 分布式计算 DataWorks
分布式×多模态:当ODPS为AI装上“时空穿梭”引擎
本文深入探讨了多模态数据处理的技术挑战与解决方案,重点介绍了基于阿里云ODPS的多模态数据处理平台架构与实战经验。通过Object Table与MaxFrame的结合,实现了高效的非结构化数据管理与分布式计算,显著提升了AI模型训练效率,并在工业质检、多媒体理解等场景中展现出卓越性能。
|
7月前
|
Cloud Native 关系型数据库 分布式数据库
客户说|知乎基于阿里云PolarDB,实现最大数据库集群云原生升级
近日,知乎最大的风控业务数据库集群,基于阿里云瑶池数据库完成了云原生技术架构的升级。此次升级不仅显著提升了系统的高可用性和性能上限,还大幅降低了底层资源成本。

热门文章

最新文章