大数据利器Hadoop的应用现状和发展趋势

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

本文讲的是大数据利器Hadoop的应用现状和发展趋势,Hadoop是Apache软件基金会旗下的一个开源分布式计算平台。以Hadoop分布式文件系统(HDFS,Hadoop Distributed Filesystem)和MapReduce(Google MapReduce的开源实现)为核心的Hadoop为用户提供了系统底层细节透明的分布式基础架构。HDFS的高容错性、高伸缩性等优点允许用户将Hadoop部署在低廉的硬件上,形成分布式系统;MapReduce分布式编程模型允许用户在不了解分布式系统底层细节的情况下开发并行应用程序。所以用户可以利用Hadoop轻松地组织计算机资源,从而搭建自己的分布式计算平台,并且可以充分利用集群的计算和存储能力,完成海量数据的处理。

  Hadoop的历史

  Hadoop的源头是Apache Nutch,该项目开始于2002年,是Apache Lucene 的子项目之一。2004年,Google在“操作系统设计与实现”(OSDI,Operating System Design and Implementation)会议上公开发表了题为“MapReduce:Simplified Data Processing on Large Clusters”(MapReduce:简化大规模集群上的数据处理)的论文,之后受到启发的Doug Cutting等人开始尝试实现MapReduce计算框架,并将它与NDFS(Nutch Distributed File System)结合,以支持Nutch引擎的主要算法。由于NDFS和MapReduce在Nutch引擎中有着良好的应用,所以它们于2006年2月被分离出来,成为了一套完整而独立的软件,起名为Hadoop。到了2008年年初,Hadoop已成为 Apache的顶级项目,它被包括Yahoo!在内的很多互联网公司所采用。现在,Hadoop已经发展成为包含HDFS、MapReduce、Pig、ZooKeeper等子项目的集合,用于分布式计算。

  Hadoop的功能与作用

  我们为什么需要Hadoop呢?众所周知,现代社会的信息量增长速度极快,这些信息里又积累着大量的数据,其中包括个人数据和工业数据。预计到2020年,每年产生的数字信息将会有超过1/3的内容驻留在云平台中或借助云平台处理。我们需要对这些数据进行分析和处理,以获取更多有价值的信息。那么我们如何高效地存储和管理这些数据,如何分析这些数据呢?这时可以选用Hadoop系统,它在处理这类问题时,采用了分布式存储方式,提高了读写速度,并扩大了存储容量。采用MapReduce来整合分布式文件系统上的数据,可保证分析和处理数据的高效。与此同时,Hadoop还采用存储冗余数据的方式保证了数据的安全性。

  Hadoop中HDFS的高容错特性,以及它是基于Java语言开发的,这使得Hadoop可以部署在低廉的计算机集群中,同时不限于某个操作系统。Hadoop中HDFS的数据管理能力,MapReduce处理任务时的高效率,以及它的开源特性,使其在同类的分布式系统中大放异彩,并在众多行业和科研领域中被广泛采用。

  Hadoop的优势

  Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下几个优点:

  ·高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。

  ·高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。

  ·高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此其处理速度非常快。

  ·高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。

  Hadoop的应用现状和发展趋势

  由于Hadoop优势突出,基于Hadoop的应用已经遍地开花,尤其是在互联网领域。Yahoo! 通过集群运行Hadoop,以支持广告系统和Web搜索的研究;Facebook借助集群运行Hadoop,以支持其数据分析和机器学习;百度则使用Hadoop进行搜索日志的分析和网页数据的挖掘工作;淘宝的Hadoop系统用于存储并处理电子商务交易的相关数据;中国移动研究院基于Hadoop的“大云”(BigCloud)系统用于对数据进行分析和并对外提供服务。

  2008年2月,Hadoop最大贡献者的Yahoo!构建了当时规模最大的Hadoop应用,它们在2000个节点上面执行了超过1万个Hadoop虚拟机器来处理超过5PB的网页内容,分析大约1兆个网络连接之间的网页索引资料。这些网页索引资料压缩后超过300TB。Yahoo!正是基于这些为用户提供了高质量的搜索服务。

  Hadoop目前已经取得了非常突出的成绩。随着互联网的发展,新的业务模式还将不断涌现,Hadoop的应用也会从互联网领域向电信、电子商务、银行、生物制药等领域拓展。相信在未来,Hadoop将会在更多的领域中扮演幕后英雄,为我们提供更加快捷优质的服务。

作者: 陆嘉恒

来源: IT168

原文标题:大数据利器Hadoop的应用现状和发展趋势

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
3月前
|
存储 数据采集 搜索推荐
Java 大视界 -- Java 大数据在智慧文旅旅游景区游客情感分析与服务改进中的应用实践(226)
本篇文章探讨了 Java 大数据在智慧文旅景区中的创新应用,重点分析了如何通过数据采集、情感分析与可视化等技术,挖掘游客情感需求,进而优化景区服务。文章结合实际案例,展示了 Java 在数据处理与智能推荐等方面的强大能力,为文旅行业的智慧化升级提供了可行路径。
Java 大视界 -- Java 大数据在智慧文旅旅游景区游客情感分析与服务改进中的应用实践(226)
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在城市空气质量监测与污染溯源中的应用(216)
本文探讨Java大数据可视化在城市空气质量监测与污染溯源中的创新应用,结合多源数据采集、实时分析与GIS技术,助力环保决策,提升城市空气质量管理水平。
Java 大视界 -- 基于 Java 的大数据可视化在城市空气质量监测与污染溯源中的应用(216)
|
3月前
|
存储 监控 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在企业生产运营监控与决策支持中的应用(228)
本文探讨了基于 Java 的大数据可视化技术在企业生产运营监控与决策支持中的关键应用。面对数据爆炸、信息孤岛和实时性不足等挑战,Java 通过高效数据采集、清洗与可视化引擎,助力企业构建实时监控与智能决策系统,显著提升运营效率与竞争力。
|
3月前
|
Java 大数据 数据处理
Java 大视界 -- 基于 Java 的大数据实时数据处理在工业互联网设备协同制造中的应用与挑战(222)
本文探讨了基于 Java 的大数据实时数据处理在工业互联网设备协同制造中的应用与挑战。文章分析了传统制造模式的局限性,介绍了工业互联网带来的机遇,并结合实际案例展示了 Java 在多源数据采集、实时处理及设备协同优化中的关键技术应用。同时,也深入讨论了数据安全、技术架构等挑战及应对策略。
|
3月前
|
数据采集 搜索推荐 Java
Java 大视界 -- Java 大数据在智能教育虚拟学习环境构建与用户体验优化中的应用(221)
本文探讨 Java 大数据在智能教育虚拟学习环境中的应用,涵盖多源数据采集、个性化推荐、实时互动优化等核心技术,结合实际案例分析其在提升学习体验与教学质量中的成效,并展望未来发展方向与技术挑战。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
Java 大视界 -- Java 大数据机器学习模型在自然语言生成中的可控性研究与应用(229)
本文深入探讨Java大数据与机器学习在自然语言生成(NLG)中的可控性研究,分析当前生成模型面临的“失控”挑战,如数据噪声、标注偏差及黑盒模型信任问题,提出Java技术在数据清洗、异构框架融合与生态工具链中的关键作用。通过条件注入、强化学习与模型融合等策略,实现文本生成的精准控制,并结合网易新闻与蚂蚁集团的实战案例,展示Java在提升生成效率与合规性方面的卓越能力,为金融、法律等强监管领域提供技术参考。
|
3月前
|
存储 人工智能 算法
Java 大视界 -- Java 大数据在智能医疗影像数据压缩与传输优化中的技术应用(227)
本文探讨 Java 大数据在智能医疗影像压缩与传输中的关键技术应用,分析其如何解决医疗影像数据存储、传输与压缩三大难题,并结合实际案例展示技术落地效果。
|
3月前
|
机器学习/深度学习 安全 Java
Java 大视界 -- Java 大数据在智能金融反洗钱监测与交易异常分析中的应用(224)
本文探讨 Java 大数据在智能金融反洗钱监测与交易异常分析中的应用,介绍其在数据处理、机器学习建模、实战案例及安全隐私等方面的技术方案与挑战,展现 Java 在金融风控中的强大能力。
|
3月前
|
机器学习/深度学习 算法 Java
Java 大视界 -- Java 大数据机器学习模型在生物信息学基因功能预测中的优化与应用(223)
本文探讨了Java大数据与机器学习模型在生物信息学中基因功能预测的优化与应用。通过高效的数据处理能力和智能算法,提升基因功能预测的准确性与效率,助力医学与农业发展。
|
3月前
|
机器学习/深度学习 搜索推荐 数据可视化
Java 大视界 -- Java 大数据机器学习模型在电商用户流失预测与留存策略制定中的应用(217)
本文探讨 Java 大数据与机器学习在电商用户流失预测与留存策略中的应用。通过构建高精度预测模型与动态分层策略,助力企业提前识别流失用户、精准触达,实现用户留存率与商业价值双提升,为电商应对用户流失提供技术新思路。