【机器学习算法-python实现】决策树-Decision tree(2) 决策树的实现

简介: (转载请注明出处:http://blog.csdn.net/buptgshengod)1.背景     接着上一节说,没看到请先看一下上一节关于数据集的划分数据集划分。现在我们得到了每个特征值得信息熵增益,我们按照信息熵增益的从大到校的顺序,安排排列为二叉树的节点。数据集和二叉树的图见下。(二叉树的图是用python的matplotlib库画出来的)数据集:  决策树:

(转载请注明出处:http://blog.csdn.net/buptgshengod)

1.背景

     接着上一节说,没看到请先看一下上一节关于数据集的划分数据集划分。现在我们得到了每个特征值得信息熵增益,我们按照信息熵增益的从大到校的顺序,安排排列为二叉树的节点。数据集和二叉树的图见下。
(二叉树的图是用python的matplotlib库画出来的)

数据集:
  

决策树:




2.代码实现部分

     因为上一节,我们通过 chooseBestFeatureToSplit函数已经可以确定当前数据集中的信息熵最大的那个特征值。我们将最大的那个作为决策树的父节点,这样递归下去就可以了。

主要函数:详见注释
def createTree(dataSet,labels):
    #把所有目标指数放在这个list里
    classList = [example[-1] for example in dataSet]
    #下面两个if是递归停止条件,分别是list中都是相同的指标或者指标就剩一个。
    if classList.count(classList[0]) == len(classList): 
        return classList[0]
    if len(dataSet[0]) == 1: 
        return majorityCnt(classList)
    #获得信息熵增益最大的特征值
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]   
    #将决策树存在字典中
    myTree = {bestFeatLabel:{}}
    #labels删除当前使用完的特征值的label
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    #递归输出决策树
    for value in uniqueVals:       
        subLabels = labels[:]       #copy all of labels, so trees don't mess up existing labels
       
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
    return myTree

打印出来的决策树: {'throat': {0: {'mustache': {0: 'women', 1: 'man'}}, 1: 'man'}}


下面就是如何是用建立好的决策树。我们建立函数
inputTree:是输入的决策树对象
featLabels:是我们要预测的特征值得label,如:['throat','mustache']
testVec:是要预测的特征值向量,如[0,0]
def classify(inputTree,featLabels,testVec):
    #存储决策树第一个节点
    firstStr = inputTree.keys()[0]
    #将第一个节点的值存到secondDict字典中
    secondDict = inputTree[firstStr]
    #建立索引,知道对应到第几种特征值
    featIndex = featLabels.index(firstStr)
    key = testVec[featIndex]
    valueOfFeat = secondDict[key]
    #对比,判断当前的键值是否是一个dict类型,如果是就递归,不是就输出当前键值为结果
    if isinstance(valueOfFeat, dict): 
        classLabel = classify(valueOfFeat, featLabels, testVec)
    else: classLabel = valueOfFeat
    return classLabel

测验:当我们输入 classify(mtree,[ 'throat' , 'mustache' ],[ 0 , 0 ])时,显示结果是women,表明没有喉结和胡子是女人。


3.源码下载


目录
相关文章
|
23天前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
80 1
|
29天前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
78 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
46 2
|
1月前
|
机器学习/深度学习 数据采集 搜索推荐
利用Python和机器学习构建电影推荐系统
利用Python和机器学习构建电影推荐系统
65 1
|
1月前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
95 1
|
1月前
|
算法
树的遍历算法有哪些?
不同的遍历算法适用于不同的应用场景。深度优先搜索常用于搜索、路径查找等问题;广度优先搜索则在图的最短路径、层次相关的问题中较为常用;而二叉搜索树的遍历在数据排序、查找等方面有重要应用。
36 2
|
1月前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
46 3
|
26天前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
39 0
|
26天前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
36 0