《中国人工智能学会通讯》——11.53 合成人脸画像质量评价

简介: 本节书摘来自CCAI《中国人工智能学会通讯》一书中的第11章,第11.53节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。

11.53 合成人脸画像质量评价

下面对以上三章中提到的基于稀疏近邻选择方法(SFS, Sparse Feature Selection)、基于人脸幻 象 思 想 的 合 成 方 法(SFS-SVR, Sparse FeatureSelection & Support Vector Regression) 和 基 于 直推式学习的方法(TFSS, Transductive Face SketchSynthesis)三种算法,以及基于位置的人脸画像合成方法 (PFSS, Position based Face Sketch Synthesis)[15]和基于马尔科夫权重场的方法 (MWF, MarkovWeight Field) [7] 进行质量评价。用这五种算法在CUHK 学生画像数据库[6]和 AR 画像数据库[16]上进行合成实验,每种算法生成 223 张画像(CUHK学生数据库 100 张,AR 数据库 123 张),算法部分合成结果示于图 5 中。图中,第一列为数据库中照片;第二列为画家手绘真实画像;第三列至最后一列分别为 SFS 方法、SFS-SVR 方法、PFSS 方法、MWF 方法及 TFSS 方法。image
这里采用的主观评价算法是两两成对比较。由于进行评价的目的是评价合成算法合成的效果,因而进行成对比较时,只需要比较对应于数据库中同一人的 5 种算法生成的画像的质量,即成对比较的内容是“相同”的(这里的内容相同指他们都属于同一个人的合成画像)。评价合成画像质量时,一般从两个方面来评价。① 合成的画像跟输入照片像不像;② 合成的画像纹理好不好。后台打分的规则是:画像 A 比画像 B 质量高,则 A 画像得 2 分,反之 B 得 2 分。如果无法判定(即不确定两者质量孰好孰坏)则两者均得 1 分。故每幅画像最高得分为 8 分(与其余四种算法合成的对应身份的画像质量相比,均判断为更好),最低得分为 0 分(其余四种算法合成的对应身份的画像质量与之相比均判断为更好)。实验中共邀请 16 位测评者进行测评,这些测评者来自各行各业,有工程师、学生、工人和老师等。

图 6 示出了主观质量评价的一种统计展示,其中,横轴为评价分数取值范围为 0~8 分;纵轴为百分比,表示某个合成算法合成的画像质量评价分数,大于横轴对应的分数的画像占该算法合成画像总数(本数据库中为 223)的百分比。该百分比越大,说明对应算法取得大于某分数的合成画像数量越多。从图中可以看出,TFSS 方法取得效果最佳。image
从图 6 中可以看出,基于直推式学习的合成方法 TFSS 总体评价值最高,基于马尔科夫权重场的合成方法 MWF 与基于位置的合成方法 PFSS 在大于 3 分小于 6 分的区间内领先于 SFS 和 SFS-SVR。但在小于 3 分的区间内,SFS-SVR 领先于除 TFSS之外的所有方法。由于模糊的原因,SFS 方法在五个合成算法中合成效果最差。这里需要注意的是由于主观评价做的是成对比较,比较的是算法,故这里 SFS 合成效果差只是相对于其他四种算法,并不是绝对的。SFS-SVR 方法大于所有的合成图像都大于 1 分,大于 2 分的占 99.5% ,说明仅有一张图像小于 2 分,且该图像得分大于 1 分。所有方法最终得到的平均质量评价分数没有等于 8 分(本系统中质量评价值最高位 8 分)的,说明没有一张合成画像是所有测评者认为其质量均优于其他四种算法合成效果的。

此外,我们还进行了基于上面五种算法合成的画像的人脸识别实验。由于本文的重点是异质人脸图像合成,人脸识别是提出的合成算法的下游应用之一,因此这里不再深究具体的人脸识别算法,而采用最常用的 3 个人脸识别算法,即 Eigenface[17] 、Fisherface [18]和 NLDA (Null-space LinearDiscriminant Analyisis) [19] 。XM2VTS 数据库[20]中的 195 对画像和照片作为训练人脸识别算法的数据集。表 1 给出了基于 5 种方法合成的人脸画像的最高识别率 , 以及对应的特征维数 ( 括号中的数字 )。image
从表 1 中可以看出,SFS 方法和 SFS-SVR 合成方法在使用 Fisherface 和 NLDA 识别方法时,能够在特征维数很低的情况下取得最高的准确率,维数越低,运算量越低,实时性越高。Fisherface 和 NLDA方法是监督学习方法,而 Eigenface 是无监督方法,故 Fisherface 和 NLDA 的人脸识别准确率明显高于Eigenface 方法。结合前面图 6 中给出的主观质量评价结果可以看出,并不是主观评价质量越高的图像越适合计算机进行人脸识别。人们评价图像时会被细节信息吸引,而这些细节信息有时并不一定适合于计算机进行识别,对于计算机而言,这些细节信息可能是“噪声”。现有的识别方法更多的是基于统计的一些信息来进行识别,而不是细节的一些信息,故而在主观评价质量值最低的两个方法 (SFS 和SFS-SVR) 反而能取得最高的人来识别准确率。

相关文章
|
8月前
|
机器学习/深度学习 人工智能 算法
从300亿分子中筛出6款,结构新且易合成,斯坦福抗生素设计AI模型登Nature子刊
【4月更文挑战第12天】斯坦福大学研究团队在Nature子刊发表论文,展示人工智能如何从300亿个分子中筛选出6种新型抗生素候选分子,为抗药性问题提供新解决方案。利用深度学习算法,AI模型考虑化学结构及合成可行性,发现独特化合物,加速药物研发。然而,成功应用还需临床试验验证及克服安全性和耐药性挑战。AI技术在药物设计中的角色引起关注,强调平衡使用与基础科学研究的重要性。
64 1
从300亿分子中筛出6款,结构新且易合成,斯坦福抗生素设计AI模型登Nature子刊
|
22天前
|
人工智能 自然语言处理 前端开发
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
Director 是一个构建视频智能体的 AI 框架,用户可以通过自然语言命令执行复杂的视频任务,如搜索、编辑、合成和生成视频内容。该框架基于 VideoDB 的“视频即数据”基础设施,集成了多个预构建的视频代理和 AI API,支持高度定制化,适用于开发者和创作者。
79 9
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
MMAudio:开源 AI 音频合成项目,根据视频或文本生成同步的音频
MMAudio 是一个基于多模态联合训练的高质量 AI 音频合成项目,能够根据视频内容或文本描述生成同步的音频。该项目适用于影视制作、游戏开发、虚拟现实等多种场景,提升用户体验。
78 7
MMAudio:开源 AI 音频合成项目,根据视频或文本生成同步的音频
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
软件测试中的人工智能革命:提升测试效率与质量的新篇章
随着人工智能技术的不断成熟,其在软件测试领域的应用正逐渐改变传统测试方式。本文将探讨AI在软件测试中的应用现状、优势以及面临的挑战,并通过具体案例分析展示AI如何提高测试效率和质量。最后,我们将讨论未来AI在软件测试中的发展趋势及其对人类测试工程师角色的影响。
264 4
|
4月前
|
人工智能 算法 测试技术
软件测试中的人工智能:提升测试效率与质量
随着软件开发的快速发展,传统的手工测试方法已经无法满足现代软件项目的需求。本文探讨了人工智能在软件测试中的应用,如何通过自动化测试、智能缺陷分析和测试用例生成等技术,提高测试效率和质量。我们将详细介绍这些技术的原理和实际应用,并讨论其带来的优势和挑战。
177 4
|
5月前
|
人工智能 安全 Anolis
中兴通讯分论坛邀您探讨 AI 时代下 OS 的安全能力 | 2024 龙蜥大会
操作系统如何提供符合场景要求的安全能力,构建更加安全可信的计算环境。
|
6月前
|
人工智能
AI Undetect:精心打造的人工智能,编写出无限接近人类质量的文本
【AI Undetect & AI Humanize】工具组合助力保持文本原创性与真实性,避过AI检测。AI Undetect专为绕过检测系统设计,而AI Humanize提供检测与改写功能。检测文本是否由AI生成,或用其快速高质量改写。改写后内容同样可检验证明效果。尝试链接:[AI Humanizer](https://aiundetect.com/)。
AI Undetect:精心打造的人工智能,编写出无限接近人类质量的文本
|
7月前
|
人工智能 搜索推荐 vr&ar
如何通过跨学科合作提升人工智能教育质量?
【6月更文挑战第1天】如何通过跨学科合作提升人工智能教育质量?
124 5
|
机器学习/深度学习 存储 人工智能
AI歌姬,C位出道,基于PaddleHub/Diffsinger实现音频歌声合成操作(Python3.10)
懂乐理的音乐专业人士可以通过写乐谱并通过乐器演奏来展示他们的音乐创意和构思,但不识谱的素人如果也想跨界玩儿音乐,那么门槛儿就有点高了。但随着人工智能技术的快速迭代,现在任何一个人都可以成为“创作型歌手”,即自主创作并且让AI进行演唱,极大地降低了音乐制作的门槛。 本次我们基于PaddleHub和Diffsinger实现音频歌声合成操作,魔改歌曲《学猫叫》。
AI歌姬,C位出道,基于PaddleHub/Diffsinger实现音频歌声合成操作(Python3.10)
|
8月前
|
机器学习/深度学习 数据采集 人工智能