《中国人工智能学会通讯》——11.11 三维模型重建算法

简介: 本节书摘来自CCAI《中国人工智能学会通讯》一书中的第11章,第11.11节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。

11.11 三维模型重建算法

由三维成像传感器获得的点云,实质上是在特定视点下对物体表面的离散采样。由于受自遮挡的影响,单个视点下获得的点云是不完备的,无法完整覆盖三维物体的各个表面。因此,大量研究集中于如何将来自多个视点的点云变换到统一的参考坐标系下 ( 即点云配准过程 ),进而将这些配准后的点云融合以得到一个完整的三维模型。

一个典型的三维模型重建系统通常包括成对点云配准、多视点云配准以及三维表面重建三个部分。早期的成对点云配准算法大多借助转台或标记点等方式手动实现[4] ,费时费力且应用场景受限。针对此,本文提出了一种基于局部特征的高精度且稳健的成对点云自动配准算法[5] 。该算法首先在点云上检测关键点并提取 RoPS 局部特征描述子,并利用特征描述子相似性获得两个点云之间的匹配特征对应点对;进而采用关键点的局部参考坐标框架计算可能的刚性变换关系;最后,采用改进迭代最近点 (ICP)算法实现点云之间的精配准。实验结果表明,在大部分情况下,点云配准的旋转误差小于 1.0°且平移误差小于 1 倍点云分辨率。如图 3 所示,当重合度大于 60% 时,所有点云对均能实现正确配准。当重合度在 30%~60% 之间时,75% 的点云对能实现正确配准。此外,本文的成对点云配准算法对噪声和数据分辨率变化十分稳健。image
多视点云配准算法的任务,在于获得点云之间的邻接关系及邻接点云的变换关系。经典算法包括张树算法[6]和连接图 (connected graph) 算法[7] ,其缺陷在于运算量较大且只能对来自同一个物体的多视点云进行配准。针对此,本文提出了一种全新的形状生长算法用于实现多物体混合多视点云的高效配准,并由此设计了一个完整的三维模型重建系统[5] 。多视点云配准算法示意图如图 4 所示。首先以所有输入点云作为初始搜索空间 Φ,然后从搜索空间中选择一幅点云作为参考形状 R 1 。对于搜索空间中的点云 S i ,首先采用成对点云配准算法将其与参考形状 R 1 配准,如图 4(a) 所示。若二者之间的重合点数超过一定的阈值,则认为点云 S i 与 R 1 成功实现了配准,并将点云 S i 中与 R 1 的距离大于平均数据分辨率的点添加到参考形状 R 1 中,从而实现了参考形状 R 1 的更新,并将 S i 从搜索空间 Φ 中删除。接着,继续采用形状生长算法对搜索空间 Φ 中尚未验证过的点云 S i+1 进行验证,直到所有的输入点云均已更新到参考形状 R 1中,或 Φ 中没有输入点云可以实现与 R 1 的配准为止。在算法迭代的过程中,R 1 逐渐生长为一个完整三维形状,如图 4(b) 所示。与此同时,形状 R 1 的姿态在整个形状生长过程中均保持不变。因此,所有点云均被配准到一个公共坐标系(即R 1 所采用的坐标系)下。当形状生长过程完成后,便得到了所有可配准输入点云与参考形状 R 1 之间的刚性变换矩阵。采用这些变换矩阵将所有的输入点云变换到 R 1 的坐标系下,从而实现了输入点云的粗配准,进而采用多视点云精配准算法对结果做进一步优化,从而将配准误差均匀分配到整个三维模型中,如图 4(c) 所示。最后,采用体素空间隐式曲面表示法实现多视点云的融合,并采用 Marching Cubes 算法实现三维表面重建,从而到一个光滑无缝的完整三维模型,如图 4(d) 所示。image
实验结果表明,本文所提多视点云配准算法对输入点云的次序不敏感,计算效率优于张树算法和连接图算法,能高精度全自动地实现单物体或多物体的多视点云配准,在对高分辨率和低分辨率点云上均能获得很好的三维重建结果。图 5(a) 展示了多个物体在多视点下的点云,图 5(b) 至 (e) 为多视点云自动配准后的结果。

image

相关文章
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
【自然语言处理】TF-IDF算法在人工智能方面的应用,附带代码
TF-IDF算法在人工智能领域,特别是自然语言处理(NLP)和信息检索中,被广泛用于特征提取和文本表示。以下是一个使用Python的scikit-learn库实现TF-IDF算法的简单示例,并展示如何将其应用于文本数据。
186 65
|
1月前
|
机器学习/深度学习 人工智能 算法
AI入门必读:Java实现常见AI算法及实际应用,有两下子!
本文全面介绍了人工智能(AI)的基础知识、操作教程、算法实现及其在实际项目中的应用。首先,从AI的概念出发,解释了AI如何使机器具备学习、思考、决策和交流的能力,并列举了日常生活中的常见应用场景,如手机助手、推荐系统、自动驾驶等。接着,详细介绍了AI在提高效率、增强用户体验、促进技术创新和解决复杂问题等方面的显著作用,同时展望了AI的未来发展趋势,包括自我学习能力的提升、人机协作的增强、伦理法规的完善以及行业垂直化应用的拓展等...
140 3
AI入门必读:Java实现常见AI算法及实际应用,有两下子!
|
1月前
|
机器学习/深度学习 人工智能 算法
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
眼疾识别系统,使用Python作为主要编程语言进行开发,基于深度学习等技术使用TensorFlow搭建ResNet50卷积神经网络算法,通过对眼疾图片4种数据集进行训练('白内障', '糖尿病性视网膜病变', '青光眼', '正常'),最终得到一个识别精确度较高的模型。然后使用Django框架开发Web网页端可视化操作界面,实现用户上传一张眼疾图片识别其名称。
63 9
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
|
25天前
|
存储 人工智能 算法
AI算法的道德与社会影响:探索技术双刃剑的边界
【8月更文挑战第22天】AI算法作为一把双刃剑,在推动社会进步的同时,也带来了诸多道德与社会挑战。面对这些挑战,我们需要以开放的心态、严谨的态度和创新的思维,不断探索技术发展与伦理规范之间的平衡之道,共同构建一个更加美好、更加公正的AI未来。
|
25天前
|
人工智能 安全 Anolis
中兴通讯分论坛邀您探讨 AI 时代下 OS 的安全能力 | 2024 龙蜥大会
操作系统如何提供符合场景要求的安全能力,构建更加安全可信的计算环境。
|
29天前
|
人工智能 自然语言处理 算法
【人工智能】TF-IDF算法概述
TF-IDF算法,全称Term Frequency-Inverse Document Frequency(词频-逆文档频率),是一种在信息检索和文本挖掘领域广泛应用的加权技术。它通过评估一个词语在文档中的重要程度,来挖掘文章中的关键词,进而用于文本分析、搜索引擎优化等场景。其核心思想是:如果某个词或短语在一篇文章中出现的频率高(TF高),且在其他文章中很少出现(IDF也高),则认为这个词或短语具有很好的类别区分能力,适合用来代表这篇文章的内容。 具体而言,TF-IDF由两部分组成,即词频(TF)和逆文档频率(IDF)。词频(TF)指的是某一个给定的词在该文件中出现的频率。这个数值通常会被归一化
20 3
|
29天前
|
机器学习/深度学习 人工智能 算法
【人工智能】线性回归模型:数据结构、算法详解与人工智能应用,附代码实现
线性回归是一种预测性建模技术,它研究的是因变量(目标)和自变量(特征)之间的关系。这种关系可以表示为一个线性方程,其中因变量是自变量的线性组合。
38 2
|
29天前
|
机器学习/深度学习 人工智能 算法
【人工智能】传统语音识别算法概述,应用场景,项目实践及案例分析,附带代码示例
传统语音识别算法是将语音信号转化为文本形式的技术,它主要基于模式识别理论和数学统计学方法。以下是传统语音识别算法的基本概述
43 2
|
2月前
|
机器学习/深度学习 数据采集 人工智能
AI技术实践:利用机器学习算法预测房价
人工智能(Artificial Intelligence, AI)已经深刻地影响了我们的生活,从智能助手到自动驾驶,AI的应用无处不在。然而,AI不仅仅是一个理论概念,它的实际应用和技术实现同样重要。本文将通过详细的技术实践,带领读者从理论走向实践,详细介绍AI项目的实现过程,包括数据准备、模型选择、训练和优化等环节。
171 3
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能算法原理
人工智能(AI)属计算机科学,聚焦于模拟人类智慧的技术与系统的研发。本文概览常见AI算法原理:机器学习含监督(如决策树、支持向量机)、无监督(如聚类、主成分分析)及强化学习算法;深度学习涉及卷积神经网络、循环神经网络和生成对抗网络;自然语言处理涵盖词袋模型、循环神经网络语言模型及命名实体识别等。这些算法支撑着AI技术的广泛应用与发展。
56 0

热门文章

最新文章