深度学习之3D场景重建

简介: 基于深度学习的3D场景重建是通过深度学习技术从多视角图像或视频数据中重建三维场景结构的过程。它在计算机视觉、增强现实、虚拟现实、机器人导航和自动驾驶等多个领域具有广泛应用。

基于深度学习的3D场景重建是通过深度学习技术从多视角图像或视频数据中重建三维场景结构的过程。它在计算机视觉、增强现实、虚拟现实、机器人导航和自动驾驶等多个领域具有广泛应用。

1. 3D场景重建的基本概念

3D场景重建的目标是从二维图像中恢复场景的三维几何结构,使得我们能够在虚拟环境中对场景进行观察和交互。传统的3D重建方法依赖于图像配准、立体视觉和多视角几何等技术,而深度学习的引入则使得这一过程更加自动化和精确。

2. 深度学习在3D场景重建中的作用

深度学习通过大量训练数据学习图像与其对应三维结构的关系,从而自动化地推断3D形状和场景布局。近年来,基于卷积神经网络(CNN)、生成对抗网络(GAN)、自编码器(Autoencoder)等架构的模型被广泛用于3D场景重建任务。

2.1 从单张图像重建

从单张2D图像中生成3D模型是一项具有挑战性的任务,因为缺少视角的深度信息。深度学习能够通过学习图像的特征,将它们映射为三维几何信息。

ShapeNet:ShapeNet是一个大型3D形状数据库,通常用于训练深度网络从单张图像中生成对应的3D模型。

Pix2Vox:这是一个经典的基于深度学习的从单张图像生成3D体素模型的方法,能够从输入图像生成稠密的三维体素网格表示。

2.2 从多视图图像重建

深度学习通过多视图图像结合,可以更准确地推断出三维场景。这种方法利用多个角度的图像来计算场景的几何形状。

Multi-view Stereo (MVS):深度学习扩展了传统多视图立体视觉技术,使得从多角度图像中生成更高质量的3D重建成为可能。例如,基于深度学习的MVSNet能够从多个视角进行点云重建。

NeRF (Neural Radiance Fields):NeRF是一种创新的方法,利用神经网络从多视角图像中推断出场景的辐射场,能够生成高质量的视点一致的3D场景重建结果。

2.3 从视频重建

视频数据可以提供更多的时序信息,通过结合深度学习,可以对连续帧之间的场景变化进行建模和预测,以便于精确地重建动态3D场景。

DeepVoxels:这种方法通过多帧视频输入推断场景的三维结构和视点变化,能够生成高质量的体素表示。

3. 3D场景重建的表示方法

3D场景重建需要采用合适的三维表示方法,以便将二维信息映射到三维空间。以下是常用的几种3D表示方法:

体素网格(Voxel Grids):将三维空间划分为固定的立方体网格,常用于早期的3D重建方法,但由于其对内存和计算资源的高需求,适合低分辨率模型。

点云(Point Clouds):通过一组稀疏的三维点来表示场景的几何结构,能够有效表示稀疏的三维信息。

网格(Meshes):利用三角形或多边形构建物体表面,适合用于高精度3D重建。

隐式函数(Implicit Functions):使用隐函数如签名距离函数(Signed Distance Function, SDF)表示物体的边界,能够生成连续的、无分辨率限制的3D表示。NeRF和DeepSDF是这类方法的典型应用。

4. 深度学习3D重建的关键技术

4.1 卷积神经网络(CNN)

CNN被广泛用于图像到3D形状的映射,能够从输入图像中提取有效的特征并进行三维重建。CNN特别擅长从局部到全局地提取图像中的模式,并将这些模式映射到三维结构。

4.2 生成对抗网络(GAN)

GAN常用于从图像生成3D模型的任务,尤其是图像与模型生成的对抗训练,可以提升重建的精度和生成的多样性。GAN能够生成逼真的三维形状或纹理。

4.3 Transformer

Transformer在3D场景重建中逐渐展现出潜力,尤其是在多模态信息(如结合图像、文本、深度图)中处理复杂的关联性,以生成更精确的三维场景。

5. 3D场景重建的应用

5.1 自动驾驶

3D场景重建为自动驾驶车辆提供精确的环境理解。通过深度学习,车辆能够实时重建周围环境的三维结构,识别道路、障碍物和行人等动态对象。

5.2 虚拟现实与增强现实(VR/AR)

在VR/AR应用中,3D场景重建用于创建虚拟世界或增强现实中的场景,让用户能够与三维虚拟物体进行互动。深度学习加快了场景的重建过程,并提升了生成的逼真度。

5.3 机器人导航

机器人需要了解周围的三维环境以便进行自主导航。通过深度学习的3D场景重建技术,机器人可以在复杂的环境中进行地图构建、路径规划和避障。

5.4 建筑与文物保护

在建筑设计和文物保护领域,3D场景重建用于从图像中重建建筑物和历史文物的三维模型,以便进行虚拟保存、分析和展示。

相关文章
|
存储 数据库 数据安全/隐私保护
基于C++开发,支持三维重建,多平面重建技术的医学影像PACS系统源码
支持非DICOM标准的影像设备的图像采集和处理。 3)支持各种扫描仪、数码相机等影像输入设备。 4)支持各大主流厂商的CT、MR、DSA、ECT、US、数字胃肠、内镜等影像设备; 5)支持所有的DICOM相机,支持各大厂家的激光相机。 6)系统完全支持HL7接口和ICD—10编码,可与HIS系统无缝连接。 7)提供全院级、科室级工作站以及远程会诊工作站,三维重建,多平面重建。
175 0
基于C++开发,支持三维重建,多平面重建技术的医学影像PACS系统源码
|
7月前
|
数据采集 存储 数据可视化
医院影像PACS系统三维重建技术(获取数据、预处理、重建)
开放式体系结构,完全符合DICOM3.0标准,提供HL7标准接口,可实现与提供相应标准接口的HIS系统以及其他医学信息系统间的数据通信。
247 3
|
7月前
|
算法 定位技术 图形学
基于Pix4Dmapper的运动结构恢复无人机影像三维模型重建
基于Pix4Dmapper的运动结构恢复无人机影像三维模型重建
137 2
|
7月前
|
传感器 数据采集 编解码
基于EinScan-S的编码结构光方法空间三维模型重建
基于EinScan-S的编码结构光方法空间三维模型重建
|
7月前
|
机器学习/深度学习 算法 数据可视化
基于3DSOM的侧影轮廓方法空间三维模型重建
基于3DSOM的侧影轮廓方法空间三维模型重建
|
7月前
|
编解码 JavaScript 定位技术
基于Pix4Dmapper的三维模型重建应用——空间分析选址
基于Pix4Dmapper的三维模型重建应用——空间分析选址
138 1
|
存储 人工智能 编解码
CVPR‘2023 | 港科大 & 腾讯 AI Lab & 港大联合出品:有趣的动态 3D 场景重建
CVPR‘2023 | 港科大 & 腾讯 AI Lab & 港大联合出品:有趣的动态 3D 场景重建
246 0
|
人工智能 编解码 算法
《中国人工智能学会通讯》——11.11 三维模型重建算法
本节书摘来自CCAI《中国人工智能学会通讯》一书中的第11章,第11.11节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。
1534 0
|
7月前
|
存储 编解码 安全
带三维重建和还原的PACS源码 医学影像PACS系统源码
带三维重建和还原的PACS源码 医学影像PACS系统源码 PACS及影像存取与传输系统”( Picture Archiving and Communication System),为以实现医学影像数字化存储、诊断为核心任务,从医学影像设备(如CT、CR、DR、MR、DSA、RF等)获取影像,集中存储、综合管理医学影像及病人相关信息,建立数字化工作流程。系统可实现检查预约、病人信息登记、计算机阅片、电子报告书写、胶片打印、数据备份等一系列满足影像科室日常工作的功能,并且由于影像数字化存储,用户可利用影像处理与测量技术辅助诊断、方便快捷地查找资料或利用网络将资料传输至临床科室,还可与医院HIS、L
97 0
|
7月前
|
存储 数据采集 固态存储
带三维重建和还原功能的医学影像管理系统(pacs)源码
带三维重建和还原功能的医学影像管理系统(pacs)源码
119 0

热门文章

最新文章

下一篇
DataWorks