《中国人工智能学会通讯》——4.20 粒计算在智能信息服务中的应用

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 本节书摘来自CCAI《中国人工智能学会通讯》一书中的第4章,第4.20节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。

4.20 粒计算在智能信息服务中的应用

粒计算的理论与方法在智能信息服务中的应用可以归结为处理信息系统中的数值、 文本、图像、音视频等数据,解决其中的不确定性问题。

例如,在处理图像方面,Zadeh 提出了模糊信息粒理论研究的一般框架后,Pedrycz 等[22]对信息粒间的结合进行了深入的研究,并结合数字化图像可粒化的特点,基于图像的内容信息和空间信息进行粒化。Pal 等[23] 提出了基于粒计算思想和粗糙熵的图像分割方法,将图像分割成若干的图像粒,最小化粗糙度从而确定分割的阈值。随后,Chakraborty 等[24]将此思想扩展于检测移动物体。

在处理文本方面,很多研究者充分利用文本可分成词语级、句子级和篇章级等不同的粒度的特点开展了大量的研究工作。何中市等[25]将云模型引入文本分类应用研究,分析文本语言中的不确定性。文本情感挖掘是文本数据挖掘中的研究领域之一,目标在于挖掘文本中的观点、态度、情绪等主观信息。张志飞等[26]针对文本中语言粒度不同,所表达的情感粒度也存在差异,情感的表达存在不确定性,提出了基于三支决策的多粒度文本情感分类。

粒计算的思想用于分析和处理当今热门的大数据也有其独到的优势。大数据规模巨大,结构复杂,数据质量参差不齐,我们可以利用粒计算的思想使用多粒度来表示大数据,从而在多视角、多层抽象全景地描述大数据中的知识。根据数据的规模、种类、结构,选取适宜的粒结构、合适的粒度来抽象数据的机理与方法,以降低数据的规模,获取更加丰富的信息。另外,大数据本身带有很强的不确定性,这就要求我们使用不确定性的度量方法来分析数据之间的关系[27] 。

传统数据挖掘与机器学习方法不能直接用于大数据分析问题,必须进行创新。目前的主要策略有分治和分层两种。分而治之是讲传统算法分布是并行化[28];而分层抽象,则是将现有模型粒化/层次化,或设计多粒度 / 多层次的新模型[29] ,如基于深度机学习的方法[30-31]和基于粒计算的方法[32] 。

大数据的多粒度表示与计算理论体系见图 1。

image
大数据的多粒度表示与计算旨在多视角、多层抽象而全景地描述大数据中的知识,是观察空间到表示空间的一对多映射关系。大数据的多粒度表示与计算一般需要解决以下关键问题:① 大数据的粒化机理。在大数据预处理阶段,根据数据的规模、种类、结构,选取适宜的粒结构、合适的粒度来抽象数据,以降低数据的规模,获取更加丰富的信息。② 多源异构数据的信息融合。对粒化后的多源异构数据,把不同粒结构、不同粒度的信息进行融合,以获得相互增强的知识;③ 大数据不确定性度量与分析,大数据内在的不确定性,导致大数据挖掘结构的不确定性[33] 。多粒度的方法能分析它们之间的关系,降低不确定性。④ 大数据的深度挖掘多粒度知识表示能提供丰富的信息,利于深度挖掘出数据内在的各种知识。上述即大数据的多粒度表示与深度挖掘的计算理论体系。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
打赏
0
0
0
0
325
分享
相关文章
36.7K star!拖拽构建AI流程,这个开源LLM应用框架绝了!
`Flowise` 是一款革命性的低代码LLM应用构建工具,开发者通过可视化拖拽界面,就能快速搭建基于大语言模型的智能工作流。该项目在GitHub上线不到1年就斩获**36.7K星标**,被开发者誉为"AI时代的乐高积木"。
AI职场突围战:夸克应用+生成式人工智能认证,驱动“打工人”核心竞争力!
在AI浪潮推动下,生成式人工智能(GAI)成为职场必备工具。文中对比了夸克、豆包、DeepSeek和元宝四大AI应用,夸克以“超级入口”定位脱颖而出。同时,GAI认证为职场人士提供系统学习平台,与夸克结合助力职业发展。文章还探讨了职场人士如何通过加强学习、关注技术趋势及培养合规意识,在AI时代把握机遇。
AI-ClothingTryOn:服装店老板连夜下架试衣间!基于Gemini开发的AI试衣应用,一键生成10种穿搭效果
AI-ClothingTryOn是基于Google Gemini技术的虚拟试衣应用,支持人物与服装照片智能合成,可生成多达10种试穿效果版本,并提供自定义提示词优化功能。
117 17
AI-ClothingTryOn:服装店老板连夜下架试衣间!基于Gemini开发的AI试衣应用,一键生成10种穿搭效果
多模态AI核心技术:CLIP与SigLIP技术原理与应用进展
近年来,多模态表示学习在人工智能领域取得显著进展,CLIP和SigLIP成为里程碑式模型。CLIP由OpenAI提出,通过对比学习对齐图像与文本嵌入空间,具备强大零样本学习能力;SigLIP由Google开发,采用sigmoid损失函数优化训练效率与可扩展性。两者推动了多模态大型语言模型(MLLMs)的发展,如LLaVA、BLIP-2和Flamingo等,实现了视觉问答、图像描述生成等复杂任务。这些模型不仅拓展了理论边界,还为医疗、教育等领域释放技术潜力,标志着多模态智能系统的重要进步。
107 13
多模态AI核心技术:CLIP与SigLIP技术原理与应用进展
一键部署 Dify + MCP Server,高效开发 AI 智能体应用
本文将着重介绍如何通过 SAE 快速搭建 Dify AI 研发平台,依托 Serverless 架构提供全托管、免运维的解决方案,高效开发 AI 智能体应用。
911 4
大企业的AI应用如何更懂业务?
数字经济推动中国经济高质量发展,大型企业数字化转型至关重要。AI技术浪潮下,国资委提出“应用领航、数据赋能、智算筑基”三大方向,深化AI与实体经济融合。CRM系统作为数智化基础设施,连接客户端与业务端,成为企业核心基座。以纷享销客为例,其通过“连接型CRM”打通数据壁垒,提供灵活组织架构配置,满足个性化需求。ShareAI平台赋能营销、销售和服务全链路智能化,确保数据安全并支持私有化部署。选择具备行业积淀和实战经验的CRM服务商,才能让数智化真正驱动业务增长与企业转型。
开箱即用的可视化AI应用编排工具 Langflow,可调用魔搭免费API作为tool
ModelScope 社区基于优秀的开源可视化AI应用编排工具 Langflow 搭建了创空间,以方便社区开发者基于社区开源模型及免费魔搭 API-Inference,快速创建Agent应用、RAG应用并将其部署为API服务。
131 14
Nacos托管LangChain应用Prompts和配置,助力你的AI助手快速进化
AI 应用开发中,总有一些让人头疼的问题:敏感信息(比如 API-KEY)怎么安全存储?模型参数需要频繁调整怎么办?Prompt 模板改来改去,每次都得重启服务,太麻烦了!别急,今天我们就来聊聊如何用 Nacos 解决这些问题。
Serverless MCP 运行时业界首发,函数计算让 AI 应用最后一公里提速
Serverless MCP 运行时业界首发,函数计算支持阿里云百炼 MCP 服务!阿里云百炼发布业界首个全生命周期 MCP 服务,无需用户管理资源、开发部署、工程运维等工作,5 分钟即可快速搭建一个连接 MCP 服务的 Agent(智能体)。作为云上托管 MCP 服务的最佳运行时,函数计算 FC 为阿里云百炼 MCP 提供弹性调用能力。
 Serverless MCP 运行时业界首发,函数计算让 AI 应用最后一公里提速
帮你整理好了,AI 网关的 8 个常见应用场景
通过 SLS 还可以汇总 Actiontrail 事件、云产品可观测日志、LLM 网关明细日志、详细对话明细日志、Prompt Trace 和推理实时调用明细等数据汇总,从而建设完整统一的可观测方案。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等