《Spark与Hadoop大数据分析》——3.3 Spark 程序的生命周期

简介: 本节书摘来自华章计算机《Spark与Hadoop大数据分析》一书中的第3章,第3.3节,作者 [美]文卡特·安卡姆(Venkat Ankam),译 吴今朝,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

3.3 Spark 程序的生命周期

以下步骤讲解了配备 Standalone 资源管理器的 Spark 应用程序的生命周期,图3-8 显示了Spark程序的调度过程:

(1)用户使用 spark-submit 命令提交一个 Spark 应用程序。
(2)spark-submit 在同一节点(客户端模式)或集群(集群模式)上启动驱动进程,并调用由用户指定的 main 方法。
(3)驱动进程联系集群管理器,根据提供的配置参数来请求启动执行进程 JVM 所需的资源。
(4)集群管理器在工作机节点上启动执行进程 JVM。
(5)驱动进程扫描用户应用程序。根据程序中的 RDD 动作和变换,Spark 会创建一个运算图。
(6)当调用一个动作(如 collect)时,图会被提交到一个有向无环图(DAG)调度程序。DAG 调度程序将运算图划分成一些阶段。
(7)一个阶段由基于输入数据分区的任务组成。DAG 调度程序会通过流水线把运算符连一起,从而优化运算图。例如,很多映射(map)运算符可以调度到一个阶段中。这种优化对 Spark 的性能是很关键的。DAG 调度程序的最终结果是一组阶段。
(8)这些阶段会被传递到任务调度程序。任务调度程序通过集群管理器(Spark Standalone / Yarn / Mesos)启动任务。任务调度器并不知道阶段之间的依赖性。
(9)任务在执行进程上运行,从而计算和保存结果。
(10)如果驱动进程的 main 方法退出,或者它调用了 SparkContext.stop(),它就会终止执行进程并从集群管理器释放资源。

图3-8描述了 Spark 程序的调度过程:

image

从内部来看,每个任务会执行相同的步骤:

image

让我们来了解在 Spark 中使用的术语,然后再进一步深入探讨 Spark 程序的生命周期:

image

3.3.1 流水线

在某些情况下,各阶段的物理集合不一定会完全和逻辑 RDD 图做到 1:1 对应。当无需移动数据就能根据其父节点计算出 RDD 时,就可以产生流水线。例如,当用户顺序地调用 map 和 filter 时,那些调用就可以被折叠成单个变换,它先映射再过滤每个元素。但是,复杂的 RDD 图会由 DAG 调度器划分为多个阶段。

利用 1.4 及更高版本的 Spark 管理界面,Spark 的事件时间轴和 DAG 可视化变得容易了。让我们执行以下代码来查看一个作业及其各阶段的 DAG 可视化:

image

图3-9 显示了上面的单词计数代码作业及其各阶段的可视化 DAG。它显示作业被分为两个阶段,因为在这种情况下发生了数据的混排。

image

图3-10 显示了阶段 0 的事件时间轴,它指明了每个任务所用的时间。

image

3.3.2 Spark 执行的摘要

在此简要说明 Spark 执行摘要:

image

相关文章
|
16天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
48 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
17天前
|
SQL 机器学习/深度学习 分布式计算
Spark快速上手:揭秘大数据处理的高效秘密,让你轻松应对海量数据
【10月更文挑战第25天】本文全面介绍了大数据处理框架 Spark,涵盖其基本概念、安装配置、编程模型及实际应用。Spark 是一个高效的分布式计算平台,支持批处理、实时流处理、SQL 查询和机器学习等任务。通过详细的技术综述和示例代码,帮助读者快速掌握 Spark 的核心技能。
45 6
|
15天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
59 2
|
16天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
56 1
|
16天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
17天前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
48 1
|
27天前
|
分布式计算 大数据 Apache
利用.NET进行大数据处理:Apache Spark与.NET for Apache Spark
【10月更文挑战第15天】随着大数据成为企业决策和技术创新的关键驱动力,Apache Spark作为高效的大数据处理引擎,广受青睐。然而,.NET开发者面临使用Spark的门槛。本文介绍.NET for Apache Spark,展示如何通过C#和F#等.NET语言,结合Spark的强大功能进行大数据处理,简化开发流程并提升效率。示例代码演示了读取CSV文件及统计分析的基本操作,突显了.NET for Apache Spark的易用性和强大功能。
34 1
|
1月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
148 6
|
1月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
64 2
|
1月前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
53 1