大数据公司实践零售O2O:打通线上线下,全触点大会员

本文涉及的产品
数据管理 DMS,安全协同 3个实例 3个月
推荐场景:
学生管理系统数据库
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

星星之火可以燎原,O2O之火几乎点燃了整个零售商业寻求变革与跃进的热情,大企业渴求O2O转型能带来蓬勃生机,小企业也跃跃欲试寻求更高层次的发展。然而O2O并不是大多数商家认为的实体店在网上开个商城,搞个APP做个微信,那只是实体企业电子商务化而已,并没有领会和传承O2O深刻意义。大企业方面已认识到O2O实现的是线上线下的一体化整合,在大数据的背景下实现了对消费者精准把握和个性化营销,但由于缺少足够的技术支撑和数据来源,无法实现线上、线下对顾客进行统一识别,无法实现真正意义上的O2O闭环。

O2O大数据实践领航者信柏科技CEO柏林森(www.symboltech.com)在接受记者采访时提出,O2O商业模式需要打通O2O双向数据、建立数据挖掘能力,实现线上线下交易、体验、反馈的无缝衔接。通过线上线下会员打通识别同一人、全触点数据采集、建立大数据管理平台支撑上层应用系统辅助零售商进行大会员管理与经营管理决策以及个性化精准会员营销的整合方案,可帮助企业打通线上线下数据,强化大数据挖掘和分析能力,实现消费者的精准画像和精准营销,并同时提供经营决策分析支持。

线上线下会员打通,全渠道识别同一人

围绕消费者接触点,打造线上线下打通的会员体系,并通过一体化的供应链体系来提供支撑。

会员打通:建立全局会员唯一标识,全渠道认知用户。对于会员的识别、追踪、服务均基于全局的会员体系。将线 上线下各自成熟的会员营销经验融会贯通。

供应链一体化:货品、交易、物流的统一管理,避免渠道间相互“冲击”。

用户触点建设:无论线上线下触点,均积累到同一会员体系内。

全触点数据采集,形成最完整的用户数据全息图

改变传统粗放的数据收集方式,通过Wifi自动感应、蓝牙定位、对接商户POS系统等方式精准采集用户画像、用户行为数据和用户交易数据。另外一个方面整合商家自有的线上资源(如APP、微博、微信等), 与信柏科技具有的国内零售消费领域最大的第三方数据库合作迅速补充线上数据,线上线下两条腿搜集用户数据,形成最完整的用户数据全息图。

建立大数据管理平台支撑两大应用系统

采集到用户数据之后,由于业务类型多、 数据不规范而且缺漏程度高,采集到的数据需要经过清洗、标准化、结构化与数据分析挖掘才能为上层的大会员分析、零售经营分析、个性化会员营销系统提供数据调用支持。

大数据管理平台建设需充分整合线下业务特点和数据情况,并逐渐积累数据挖掘结果。构建过程中,需与零售商洽谈进行业务调研,梳理其线下类目,分业态建立标签体系,另外一个方面进行数据调研,整合数据源。通过两个方面的调研完成线下数据挖掘。数据挖掘的价值和数据精度紧密关联,需在长期的积累过程中不断完善。

 

(1)梳理线下类目建立类目体系。类目体系即商品类目体系及其描述,为零售商业基于信柏线上商品类目树及品类描述建立满足线下零售特征的类目体系。

(2)分业态建立标签体系。即基于消费者线下行为、交易特征,建立消费者标签类目体系,支撑分析需要。标签体系是信柏科技零售商业O2O大数据解决方案充分利用线上线下数据资源,开展以消费者为中心、以消费者行为倾向为结果的数据分析,实现数据标准化、规范化的理论基础,是打通、整合线上线下数据的第一步。根据对零售商业业务特点、数据需求的充分调研,结合自身在线上零售数据标签设计方面的经验,开展针对性的梳理、修改、完善,为零售商业设计符合零售大数据建设及应用需求的数据标签体系。

(3)构建实时触发的场景体系。场景体系即时学习消费者的行为,判断当前消费者的消费意图、触点管理触发个性化营销活动。场景体系为上层的个性化营销系统提供接口,通过触点管理主要发挥两个方面的作用:判断消费者当前活动状态,从而确定是否开展营销,比如大会员特征场景触发、员场内实时位置/行为场景触发触发个性化营销活动;在确定开展营销的基础上,判断消费者当前消费意图,从而指导业态、品类营销内容的选择。

大数据分析展示系统辅助零售商进行大会员管理与经营管理决策

大数据分析展示系统可根据零售商业的业务需求定制,从不同的角度予以展现。例如,购物中心大数据分析体系建设基于从商场线下会员个人数据、线下会员销售数据以及信柏科技线上补充数据等渠道获取到的数据,依照人、店、场、圈、网5个分析目标,围绕会员特征数据、会员行为数据、会员消费数据三类核心数据维度划分相应的分析维度和分析指标,全面囊括了商场各核心经营目标分析中所需要的分析场景,最终实现对经营分析和决策支持的全方位多维度分析。大数据展示系统支持购物中心管理决策,例如投资前决策辅助,选址、设计决策等规划决策支持;品牌引进决策支持、店铺招商调整等招商决策支持;动线调整、经营情况跟踪等日常管理支持;跟踪营销效果等营销支持。

个性化营销系统辅助零售商进行个性化精准会员营销

线下零售个性化营销系统是依赖大数据管理平台数据挖掘结果,基于线下业务特点建立的个性化营销体系。通过场景体系确定营销触发后,通过对消费者交易、行为数据的分析,可以对消费者品类风格倾向、品类消费能力、品类品牌倾向进行详细标定,从而获取所需的消费者消费倾向。基于每个消费者长期偏好和短期意图,利用规则算法选择发送个性化营销信息。(可通过短信、APP、微信、POS机、EDM等推送信息,提供个性化SDK、个性化微信/短信接口)

原文发布时间为: 2014年7月31日
本文作者:赛迪 
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
2月前
|
SQL 分布式计算 运维
如何对付一个耗时6h+的ODPS任务:慢节点优化实践
本文描述了大数据处理任务(特别是涉及大量JOIN操作的任务)中遇到的性能瓶颈问题及其优化过程。
|
1月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
57 4
|
3月前
|
机器学习/深度学习 供应链 大数据
【2023Mathorcup大数据】B题 电商零售商家需求预测及库存优化问题 python代码解析
本文提供了2023年MathorCup大数据竞赛B题的电商零售商家需求预测及库存优化问题的Python代码解析,涉及数据预处理、特征工程、时间序列预测、聚类分析以及模型预测性能评价等步骤。
178 0
|
14天前
|
边缘计算 人工智能 搜索推荐
大数据与零售业:精准营销的实践
【10月更文挑战第31天】在信息化社会,大数据技术正成为推动零售业革新的重要驱动力。本文探讨了大数据在零售业中的应用,包括客户细分、个性化推荐、动态定价、营销自动化、预测性分析、忠诚度管理和社交网络洞察等方面,通过实际案例展示了大数据如何帮助商家洞悉消费者行为,优化决策,实现精准营销。同时,文章也讨论了大数据面临的挑战和未来展望。
ly~
|
1月前
|
供应链 搜索推荐 大数据
大数据在零售业中的应用
在零售业中,大数据通过分析顾客的购买记录、在线浏览习惯等数据,帮助零售商理解顾客行为并提供个性化服务。例如,分析网站点击路径以了解顾客兴趣,并利用历史购买数据开发智能推荐系统,提升销售和顾客满意度。此外,大数据还能优化库存管理,通过分析销售数据和市场需求,更准确地预测需求,减少库存积压和缺货现象,提高资金流动性。
ly~
254 2
|
4月前
|
数据采集 运维 Cloud Native
Flink+Paimon在阿里云大数据云原生运维数仓的实践
构建实时云原生运维数仓以提升大数据集群的运维能力,采用 Flink+Paimon 方案,解决资源审计、拓扑及趋势分析需求。
18506 54
Flink+Paimon在阿里云大数据云原生运维数仓的实践
|
1月前
|
SQL 消息中间件 分布式计算
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(一)
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(一)
70 0
|
1月前
|
SQL 大数据
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(二)
大数据-143 - ClickHouse 集群 SQL 超详细实践记录!(二)
54 0
|
1月前
|
SQL 消息中间件 分布式计算
大数据-130 - Flink CEP 详解 - CEP开发流程 与 案例实践:恶意登录检测实现
大数据-130 - Flink CEP 详解 - CEP开发流程 与 案例实践:恶意登录检测实现
39 0
|
3月前
|
分布式计算 搜索推荐 物联网
大数据及AI典型场景实践问题之通过KafKa+OTS+MaxCompute完成物联网系统技术重构如何解决
大数据及AI典型场景实践问题之通过KafKa+OTS+MaxCompute完成物联网系统技术重构如何解决