诊疗AI:好消息是,我很擅长预测您何时死于心脏疾病; 但坏消息是……

简介:

…… 您恐怕还是难逃死厄。

诊疗AI:好消息是,我很擅长预测您何时死于心脏疾病; 但坏消息是……

对于那些患有严重心脏病的患者,人工智能在预测病痛发作及致死时间方面的表现优于人类医生。这一结论已经在本周《放射学》杂志发表的论文当中得到证实。

一支由伦敦帝国理工学院MRC伦敦医学科学研究所(简称LMS)领导的医疗与计算机科学家小组打造出第一套解决方案,旨在利用机器学习技术研究心脏病。

肺高血压是一种肺部供氧埃及压力水平增高的病症,如果不及时加以治疗则很可能危及病患生命。英国罹患这种病症的患者达7000人,且三分之一患者会在确认后的五年之内死于心力衰竭。以往的死亡风险往往由放射科医师通过手动测量连续心脏功能的方式来计算。而根据我们得到的消息,此次最新发布的AI软件能够在数秒钟内分析MRI扫描及其它计数,并几乎实时做出预测。在此结论基础之上,医生们将能够更快且更好地制定针对性治疗计划。

“计算机能够在数秒之内完成分析,同时解释来自医学成像、血液测试以及其它调查的数据,且无需任何人为操作的介入。其能够帮助医生在正确时间为正确的患者提供正确的治疗,”论文联合作者兼伦敦大学学院研究员Tim Dawes解释称。

该小组发布的论文指出,患者必须接受心脏磁共振成像扫描以进行心脏功能评估。扫描结果将被转换为虚拟三维模型,用以映射心脏右心室中所形成压力的方向与大小。每位患者需要步行六分钟,并将此距离中的监测数据添加到心脏模型当中以供软件进行分析。

线性回归作为一种重要的机器学习技术,被用于追踪心脏健康与工作情况同这些变量之间的关系,从而估算随着疾病发展而导致心力衰竭的具体风险。

病患会根据实际风险类别被该AI分类为“非常高”、“高”、“中”与“低”几等。举例来说,被划分为风险“非常高”一等的患者在未来五年内有40%的生存机率; 而“低”风险患者在同一周期内的生存机率则高达90%。

诊疗AI:好消息是,我很擅长预测您何时死于心脏疾病; 但坏消息是……

五年内不同分类患者生存机率预测图表(图片来源:O'Regan et al.)

这项项目已经得到伦理研究委员会的预告批准,基于来自256位英国国民健康保险制度内病患的MRI扫描图,且研究工作已经得到他们的书面同意。在研究过程中,三分之一病患陆续辞世。

“应用机器学习”技术能够“从心脏MR成像中获取数据,进而更为准确以对肺高血压病患做出预测”,这份研究论文给出结论称。

“与传统成像、血液动力学、功能与临床标记方法相比,包含三维心脏运动模型的机器学习生存机率计算模型能够带来更为理想的预测后效益。使用心脏MR成像的机器学习方案应当成为指导患者诊疗管理的关键性工具。”

研究人员计划通过对来自不同医院的患者数据进行测试以验证该软件的结果准确性。软件的设计目标仅限于可能死于相关并发症的心脏病患者,因此其训练数据也必须与此要求相符。开发团队表示,其在为程序提供训练素材时需要牢记这一点,否则很可能给结果带来偏差。

总体而言,这款AI方案的开发目标在于更准确地预测患者的生存情况,并帮助医生尽快为患有肺动脉高血压及其它以及疾病的患者提供最佳治疗方案。





原文发布时间为:2017年1月19日 
本文作者:作者:李超
本文来自云栖社区合作伙伴至顶网,了解相关信息可以关注至顶网。
目录
相关文章
|
人工智能 编解码 自然语言处理
上交大&上海AI lab研发胸部X-ray疾病诊断基础模型,成果入选Nature子刊
上交大&上海AI lab研发胸部X-ray疾病诊断基础模型,成果入选Nature子刊
230 0
|
2月前
|
机器学习/深度学习 人工智能 搜索推荐
AI与未来医疗:智能化诊疗的时代
随着人工智能技术的迅猛发展,其在医疗领域的应用日益广泛。本文探讨了AI在医疗诊断、治疗和健康管理中的具体应用及其潜在影响。AI技术不仅提高了诊断的准确性和效率,还为个性化治疗提供了可能。同时,通过对大量健康数据的分析,AI还能预测疾病风险,帮助医生制定更有效的预防措施。尽管存在一些伦理和隐私问题,但AI在医疗领域的前景依然广阔。本文将深入分析这些应用的现状、挑战及未来发展趋势。
|
2月前
|
人工智能 搜索推荐 算法
AI与未来医疗:智能化诊疗的新篇章
在21世纪的科技浪潮中,人工智能正迅速融入各行各业。医疗领域作为关乎人类健康和生命的重要领域,自然也不例外。本文将探讨AI在未来医疗中的应用及其潜在影响,从智能诊断到个性化治疗,再到医疗机器人和远程医疗。通过对技术实现原理、应用场景及未来展望的分析,揭示AI如何改变传统医疗模式,提高诊疗效率和准确性,为患者带来更好的医疗体验。
|
6月前
|
机器学习/深度学习 数据采集 人工智能
【AI 场景】解释使用人工智能诊断医学图像中疾病的过程
【5月更文挑战第4天】【AI 场景】解释使用人工智能诊断医学图像中疾病的过程
|
机器学习/深度学习 存储 人工智能
【年终特辑】看见科技创新力量 洞见时代创业精神—医疗健康—小白世纪:AI医疗影像筛查诊疗服务平台
【年终特辑】看见科技创新力量 洞见时代创业精神—医疗健康—小白世纪:AI医疗影像筛查诊疗服务平台
167 1
|
机器学习/深度学习 人工智能 算法框架/工具
AI在医疗诊断中的应用:图像分析和疾病预测
随着人工智能(AI)的快速发展,它在医疗领域的应用越来越受到关注。其中,图像分析和疾病预测是AI在医疗诊断中最具潜力的领域之一。本文将探讨如何使用AI技术来分析医学图像并预测疾病的发展,为医生提供更准确和及时的诊断结果。
570 0
|
机器学习/深度学习 人工智能 边缘计算
【年终特辑】看见科技创新力量 洞见时代创业精神—医疗健康—透彻未来:深耕病理,AI赋能肿瘤精准诊疗
【年终特辑】看见科技创新力量 洞见时代创业精神—医疗健康—透彻未来:深耕病理,AI赋能肿瘤精准诊疗
206 0
|
机器学习/深度学习 传感器 数据采集
2022极端高温!机器学习如何预测森林火灾?⛵ 万物AI
机器学习和深度学习等人工智能技术在森林火灾扑救过程中的应用。
704 2
2022极端高温!机器学习如何预测森林火灾?⛵ 万物AI
|
机器学习/深度学习 数据采集 存储
AI带你省钱旅游!精准预测民宿房源价格!
本文基于Airbnb在大曼彻斯特地区的房源数据,构建机器学习模型,进行数据分析与挖掘建模,预测民宿房源的价格走势。当然,同样的方法模式也可以应用在国内平台。
2193 2
AI带你省钱旅游!精准预测民宿房源价格!
|
机器学习/深度学习 人工智能 安全
超长序列,超快预测!深势科技联手阿里云,AI蛋白质预测再下一城
强强联合,突破 AI 蛋白质预测模型推理性能瓶颈,支持最高 6.6k 长氨基酸序列蛋白质的预测计算,达到目前已知最优推理效果。
超长序列,超快预测!深势科技联手阿里云,AI蛋白质预测再下一城

热门文章

最新文章

下一篇
无影云桌面