什么是IFTTT?
IFTTT是“if this then that”的缩写,如果这样就那样。this 称为 trigger,而 that 称为 action。每条 if this then that 称为 task。IFTTT可以实现多种互联网应用的协同工作。
为了实现 IFTTT的功能,IFTTT必须获得授权。
走近IFTTT
随着信息技术的发展,人们在日常生活和工作中都不可避免的要用到邮箱、聊天工具、云存储等网络服务。然而,这些服务很多时候都是单独运行的,不能很好的实现资源共享。针对该问题,IFTTT提出了“让互联网为你服务”的概念,利用各网站和应用的开放API,实现了不同服务间的信息关联。
例如,IFTTT可以把指定号码发送的短信自动转发邮箱等。为了实现这些功能,IFTTT搭建了高性能的数据架构。近期,IFTTT的工程师Anuj Goyal对数据架构的概况进行了介绍,并分享了在操作数据时的一些经验和教训。
在IFTTT,数据非常重要——业务研发和营销团队依赖数据进行关键性业务决策;产品团队依赖数据运行测试/了解产品的使用情况,从而进行产品决策;数据团队本身也依赖数据来构建类似Recipe推荐系统和探测垃圾邮件的工具等;甚至合作伙伴也需要依赖数据来实时了解Channel的性能。鉴于数据如此重要,而IFTTT的服务每天又会产生超过数十亿个事件,IFTTT的数据框架具备了高度可扩展性、稳定性和灵活性等特点。接下来,本文就对数据架构进行详细分析。
1.数据源
在IFTTT,共有三种数据源对于理解用户行为和Channel性能非常重要。首先,AWS RDS中的MySQL集群负责维护用户、Channel、Recipe及其相互之间的关系等核心应用。运行在其Rails应用中的IFTTT.com和移动应用所产生的数据就通过AWS Data Pipeline,导出到S3和Redshift中。其次,用户和IFTTT产品交互时,通过Rails应用所产生的时间数据流入到Kafka集群中。最后,为了帮助监控上百个合作API的行为,IFTTT收集在运行Recipe时所产生的API请求的信息。这些包括反应时间和HTTP状态代码的信息同样流入到了Kafka集群中。
2.IFTTT的Kafka
IFTTT利用Kafka作为数据传输层来取得数据产生者和消费者之间的松耦合。数据产生者首先把数据发送给Kafka。然后,数据消费者再从Kafka读取数据。因此,数据架构可以很方便的添加新的数据消费者。
由于Kafka扮演着基于日志的事件流的角色,数据消费者在事件流中保留着自己位置的轨迹。这使得消费者可以以实时和批处理的方式来操作数据。例如,批处理的消费者可以利用Secor将每个小时的数据拷贝发送到S3中;而实时消费者则利用即将开源的库将数据发送到Elasticsearch集群中。而且,在出现错误时,消费者还可以对数据进行重新处理。
3.商务智能
S3中的数据经过ETL平台Cranium的转换和归一化后,输出到AWS Redshift中。Cranium允许利用SQL和Ruby编写ETL任务、定义这些任务之间的依赖性以及调度这些任务的执行。Cranium支持利用Ruby和D3进行的即席报告。但是,绝大部分的可视化工作还是发生在Chartio中。
而且,Chartio对于只了解很少SQL的用户也非常友好。在这些工具的帮助下,从工程人员到业务研发人员和社区人员都可以对数据进行挖掘。
4.机器学习
IFTTT的研发团队利用了很多机器学习技术来保证用户体验。对于Recipe推荐和问题探测,IFTTT使用了运行在EC2上的Apache Spark,并将S3当作其数据存储。
5.实时监控和提醒
API事件存储在Elasticsearch中,用于监控和提醒。IFTTT使用Kibana来实时显示工作进程和合作API的性能。在API出现问题时,IFTTT的合作者可以访问专门的Developer Channel,创建Recipe,从而提醒实际行动(SMS、Email和Slack等)的进行。
在开发者视图内,合作者可以在Elasticsearch的帮助的帮助下访问Channel健康相关的实时日志和可视化图表。开发者也可以通过这些有力的分析来了解Channel的使用情况。
6.经验与教训
最后,Anuj表示,IFTTT从数据架构中得到的教训主要包括以下几点:
- 为了完全信任数据,在处理流中加入若干自动化的数据验证步骤非常重要!例如,IFTTT开发了一个服务来比较产品表和Redshift表中的行数,并在出现异常情况时发出提醒。
- 在类似的复杂架构中,设置合适的警告来保证系统工作正常是非常关键的!IFTTT使用Sematext来监控Kafka集群和消费者,并分别使用Pingdom和Pagerduty进行监控和提醒。
- 从一开始就要使用集群,方便以后的扩展!但是,在因为性能问题投入更多节点之前,一定要先认定系统的性能瓶颈。例如,在Elasticsearch中,如果碎片太多,添加更多的节点或许并 不会加速查询。最好先减少碎片大小来观察性能是否改善。
- 通过Kafka这样的数据传输层实现的生产者和消费者的隔离非常有用,且使得Data Pipeline的适应性更强。例如,一些比较慢的消费者也不会影响其他消费者或者生产者的性能。
- 在长期存储中使用基于日期的文件夹结构(YYYY/MM/DD)来存储事件数据。这样存储的事件数据可以很方便的进行处理。例如,如果想读取某一天的数据,只需要从一个文件夹中获取数 据即可。
- 在Elasticsearch中创建基于时间(例如,以小时为单位)的索引。这样,如果试图在Elasticsearch中寻找过去一小时中的所有API错误,只需要根据单个索引进行查询即可。
- 不要把单个数据马上发送到Elasticsearch中,最好成批进行处理。这样可以提高IO的效率。
- 根据数据和查询的类型,优化节点数、碎片数以及每个碎片和重复因子的最大尺寸都非常重要。
- 本文作者:以墨茄data
- 来源:51CTO