大数据需要什么样的合作伙伴?

简介:

企业做大数据以来,碰到了很多的合作伙伴,大家都有疑问,你需要什么,我能帮到你什么?这里谈谈笔者个人的理解,希望有所启示。

首先,以数据挖掘见长的公司将获得先发优势。

一是大数据赋予这类公司更大的机遇,这个时代,任何公司都面临着从传统经验决策向数据决策的挑战,传统决策的科学性所以不够,一方面是企业的数据意识并不强,二是数据本身乏善可陈,比如以前运营商并没有把O域数据当成真正的资源来运营。

大数据则赋予这类公司以全新的机会,几乎在任何一个方面,这类公司都由此受益,做数据挖掘的,最苦恼的,莫过于缺数据,现在有了,而数据化思维席卷全行业,也让其获得了势,没有更好的时代了。

而大多数企业, 太缺乏采矿能力了,面对一大堆数据束手无策,这为数据挖掘见长的公司提供了全新的机会。

二是稀缺性,应该讲,全行业干这活的公司,并敢于对外输出能力的,屈指可数,能者寥寥。

国内IT码农很多,但数据建模师却很难找,一方面跟职业特点有关,码农可以快速产出,但数据建模师培养非一日之功,另一方面,具备数据建模师培养环境的公司很少,所谓三人成行,英雄主义固然可以,但要能真正形成一直建模团队非常不易。

笔者看到的大多优秀的挖掘公司,人员素质相对较高,培养体系较好,应是有一定文化沉淀的,数据挖掘显然是不能过于浮躁的,在这个躁动的时代,越发显得其珍贵。

还有一个原因是,诸如BAT等一些互联网公司对于建模师的疯狂席卷,也是导致稀缺的一个原因,笔者自己的团队一年内也送走2人,算是一个佐证。

但这类挖掘公司,也面临非常大的挑战,一方面传统的知识结构和挖掘技能需要与时俱进,什么SAS,SPSS或者专有挖掘平台,并不能包打天下,诸如深度学习、搜索算法、并行挖掘等等,似乎对他们也是全新的挑战,另一方面,也面临激烈的人才竞争,在这个关键节点,还是要守住。

但很多传统意义上的合作伙伴,比如运营商的集成商,在这方面的能力则是乏善可陈的,大家都在提大数据转型,但似乎更侧重在平台层面投入力量,在数据建模上鲜有动作或建树,或者仅仅是蜻蜓点水。

可以这么说,大多数传统企业的合作伙伴,如果说是做BI的,更擅长的是取数或报表能力,数据挖掘有些勉为其难,这似乎成为了其大数据战略的盲点。

一些公司似乎也走入另一个误区,以为咨询分析师可以起到建模师的职责,但大数据时代,更需要能自己操控数据,PPT也许是重要,但真要玩数据,还得见真功夫,不是提个取数需求,EXCEL里面透视一下就算是了。

曾经让资深的咨询分析师来干建模师的活,也是非常差强人意的,说得再漂亮,PPT写得再好,管理能力再高,在数据挖掘面前也是一个死。

大数据时代,满足一个企业的需求,需要从数据开始, 没有这个能力,很难说有什么新的增长机会。

其次,需要服务能力卓越的大数据技术公司。

大数据技术的特点决定了其必然是百花齐放的,封闭的技术体系并不现实,因此大数据技术支撑不可能再大包大揽,某些公司规划很大,野心很大,一来就谈PaaS,但具体某个产品出来问题太多,拿客户当白老鼠。

做大数据平台或产品还是要讲究点精益求精,少提点概念,好的东西自然会有人买账,比如GBASE,相反,则会被唾弃,这是个群雄并起的时代,不会缺了谁就活不了,产品做深远好过摊子铺得太大。

阿里算有个PaaS,那也是对内运营千锤百炼出来的,但他们的道路,并不可模仿,如数加这类平台组件大多通用性并不强,只能依托云平台来进行捆绑。

同时,大数据应用要求变化太快,技术一日千里,必然要求大数据技术公司拥有强大、快速的售后技术服务支撑能力,那种听不见一线炮声的产品研发模式,是缺乏竞争力的。

同时要求你的产品符合分布式、弹性可扩展、相对开放的路线要求,但无论如何,大数据技术产品从底向上,都孕育着巨大机会,比如浙江移动对于在线多维分析有着强烈的需求,只要你的产品足够好,服务能力足够强。

有些技术公司,似乎已经忘记了自己是如何发家的,事情还没做呢就先放一套规矩出来,比如产品化的原则,诚然,产品成熟后的确可以,但路还没趟出来呢,就急着以产品路线挟制客户,显示出了其在大数据上的急功近利。

再次,能起到连接的公司,也孕育着巨大的机会。

中国移动提出了大连接的战略,是有其深远意义的,诸如运营商等拥有大数据的企业,到底缺什么?

实际上是缺真实的市场需求,从全行业讲,整个社会对于其数据的理解也是非常有限的,举个例子:

某个大型商场规划项目,现在需要用数据来决策,商场会找谁要数据?

估计没人会想到运营商也能做这事,即使听说了,也对其报严重的怀疑,这是因为,虽然运营商数据有价值,但很少有机会能推出真正场景化的大数据产品,当前的一些验真接口,或者依托传统渠道走一波的产品形式,其实跟大数据关系不大,不能自己骗自己。

事实上,现在运营商的大数据产品大多还在概念和形象展示阶段,实用性离商用还有不少距离,比如一份商业分析报告,涉及职业,收入、习惯等标签需求,估计没有运营商能较为完整做出来,一方面是前期没有足够的需求输入,另一方面自己也没储备,诸如职业等标签,能做和已经有了毕竟是两个层面的事情。

当前,市场真实的客户与运营商还有着不少的距离,因此,深谙行业大数据需求的企业,能够撮合最终客户与运营商的企业,比如垂直咨询服务公司,应有巨大的商机。

解决沟通问题,让真实的需求暴露在运营商面前,让其认识到差距,才可能有市场化驱动的建模和产品,运营商才有真正商业化、规模化变现的机会,在这个过程中,起到粘合剂的公司,必然有巨大的发展空间。

比如对于商业分析报告,运营商提供标签,咨询公司提供垂直分析报告,两者各取所长,就是一种很好的大数据生态形式。

很多企业现在还苦恼于没有好的大数据商业模式,但实际上,哪有那么多的商业模式,任何一种现存的商业模式结合你独有的数据,就有广阔的前景,关键在于你能做多深。

当然我们提连接不是让合作伙伴囤积数据,一开始就抱有这个想法的第三方公司,是无法长期合作的,谁都不是傻子。

最后,数字化运营能力急缺,提供这方面的服务还是有前景的。

企业文化因素、大数据的高门槛、不擅长策划和拓展,无大数据运营经验,习惯坐等生意上门等因素,都较大抑制了大数据的发展,比如运营商,在传统通信产品运营上可能还有一些套路,但在较为高端的大数据产品上,人力资源和运营经验则非常缺乏。

大数据技术人员当商务人员用,这是转型期间无奈的选择,但也孕育着合作机会。

面对大数据,我们的确缺失太多的能力,但我们的需求也确切切实实在改变,对于传统合作伙伴来讲,原有的地盘不会是永远的,需要有一颗勇于改变的心,对于新的合作伙伴,则要抓住这个机会,找到适合自己的切入点,与客户共同成长。


本文作者:傅一平

来源:51CTO

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
存储 自然语言处理 NoSQL
恭喜!杭州悦数成为「大数据技术标准推进委员会」2023 年度合作伙伴
近日,国内领先的原生分布式图数据库厂商——杭州悦数科技有限公司(以下简称“杭州悦数”)正式成为中国通信标准化协会大数据技术标准推进委员会 2023 年度大数据技术与产品工作组、数据库与存储工作组合作伙伴。杭州悦数将与中国通信标准化协会一起共同推动国内大数据技术标准制定,助力图数据库核心技术发展与应用普及。
|
大数据 数据安全/隐私保护
《数据安全助力大数据产业发展 —— 数据安全能力成熟度模型合作伙伴计划》电子版地址
数据安全助力大数据产业发展 —— 数据安全能力成熟度模型合作伙伴计划
160 0
《数据安全助力大数据产业发展 —— 数据安全能力成熟度模型合作伙伴计划》电子版地址
|
大数据 数据挖掘 定位技术
MIT中国未来城市实验室签约创头条”数据合作伙伴”,深耕双创大数据
日前,国内知名创新创业服务机构创头条与美国麻省理工大学(MIT)中国未来城市实验室(MIT China Future City Lab,简称MIT-CFC实验室)共同宣布,双方达成数据合作关系,创头条成为MIT-CFC的数据合作伙伴(Data Partner)之一。未来双方将就创新创业经济地理研究、人力资本与创新活力研究、众创空间供给与需求机制研究等方面展开合作,探索创新创业升级发展的新模式。
393 0
|
3月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
323 14
|
5月前
|
数据采集 分布式计算 DataWorks
ODPS在某公共数据项目上的实践
本项目基于公共数据定义及ODPS与DataWorks技术,构建一体化智能化数据平台,涵盖数据目录、归集、治理、共享与开放六大目标。通过十大子系统实现全流程管理,强化数据安全与流通,提升业务效率与决策能力,助力数字化改革。
215 4
|
4月前
|
机器学习/深度学习 运维 监控
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
运维不怕事多,就怕没数据——用大数据喂饱你的运维策略
186 0
|
5月前
|
分布式计算 DataWorks 数据处理
在数据浪潮中前行:记录一次我与ODPS的实践、思考与展望
本文详细介绍了在 AI 时代背景下,如何利用阿里云 ODPS 平台(尤其是 MaxCompute)进行分布式多模态数据处理的实践过程。内容涵盖技术架构解析、完整操作流程、实际部署步骤以及未来发展方向,同时结合 CSDN 博文深入探讨了多模态数据处理的技术挑战与创新路径,为企业提供高效、低成本的大规模数据处理方案。
346 3
|
5月前
|
SQL 人工智能 分布式计算
ODPS:数据浪潮中的成长与突围
本文讲述了作者在大数据浪潮中,通过引入阿里云ODPS体系(包括MaxCompute、DataWorks、Hologres)解决数据处理瓶颈、实现业务突破与个人成长的故事。从被海量数据困扰到构建“离线+实时”数据架构,ODPS不仅提升了数据处理效率,更推动了技术能力与业务影响力的双重跃迁。
|
3月前
|
传感器 人工智能 监控
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
数据下田,庄稼不“瞎种”——聊聊大数据如何帮农业提效
161 14
|
2月前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。