漫谈大数据时代的个人信息安全(三)——“点赞之交”

简介: 漫谈大数据时代的个人信息安全(三)——“点赞之交”


互联网就像公路,用户使用它,就会留下脚印。

每个人都在无时不刻的产生数据,在消费数据的同时,也在被数据消费。

近日,某高校毕业生在校期间窃取学校内网数据,收集全校学生个人隐私信息的新闻引发了人们对大数据时代个人信息安全问题的再度关注。在大数据时代,推荐算法、AIGC更是对个人信息安全提出了新的挑战。

1. 点赞之交

“点赞之交”指的是社交媒体上的点赞往来,一些人喜欢在微博、朋友圈里给自己喜欢的信息或博文点赞。殊不知这么一个小小的举动,就会导致我们的私人信息被人窥探。

2012年,科辛斯基就证明,平均基于Facebook上的68个“点赞”,就可以预测用户的肤色(准确度95%)、性取向(准确度88%)以及政治倾向(民主党或共和党,准确度85%)。可预测的内容远不止于此,还包括智力、宗教信仰,以及酒精、香烟和毒品使用。甚至可以推断某人的父母是否离婚。

在不断研究和改进后,其模型变得日益完善:

  • 仅仅基于10个点赞,就能比受试者的同事更准确地评价受试者;
  • 70个“点赞”足以比受试者的朋友更了解受试者;
  • 150个点赞可以比受试者的父母更了解受试者;
  • 300个点赞可以让受试者的合作伙伴更了解受试者。

基于更多的点赞,科辛斯基对受试者的了解,甚至超过受试者自己。

科辛斯基等人之后开发了一种非常简单的方法。首先,他们以在线测验的形式向测试对象提供问卷。根据他们的回答,心理学家计算了受试者的个人“大五”人格分数(OCEAN:开放性Openness、尽责性Conscientiousness、外向性Extraversion、随和性Agreeableness,情绪稳定性Neuroticism)。 然后科辛斯基的团队将结果与受试者的其他在线数据进行比较,例如,他们在Facebook上“点赞”、分享或发帖的数据,以及性别、年龄、居住地点等数据,使研究人员能够建立特定网络行为与个性特质之间的关联。

2016年,特朗普和希拉里的总统大选上演了一场“数据大战”,特朗普团队签下了“剑桥分析”(Cambridge Analytica,CA)大数据公司,并聘用该公司首席执行官亚历山大·尼克斯(Alexander Nix)作为竞选活动的数字策略负责人。

剑桥分析公司利用自己开发的“This is Your Digital Life”性格测试工具,通过Facebook发放问卷,获得了5000万用户数据,通过分析用户的年龄、性别、种族、住址、电话号码、电邮信箱、个人喜好、家庭状况、活动范围、朋友圈等个人隐私数据,建立心理模型,挖掘群体偏好,分析用户性格,预测政治立场,同时,每天有针对性的投放4万至5万条内容有差异的广告,评估用户反馈,调整投放内容,左右选民倾向,最终影响了美大选选情,助力特朗普竞选成功。

2. 点赞诈骗

套路一:

犯罪分子冒充商家在微信群或者朋友圈发布“点赞有奖”信息,声称集满一定数量免费赠送高档物品,受害人只需要支付邮费,要求参与者将自己的姓名、电话、住址等个人资料发送至微信后台,以中奖后需要联系本人,邮寄奖品等名义套取参与者信息。

获得信息后,即以“手续费”、“公证费”、“保证金”等形式实施诈骗,或发送残次品并通过快递收取货品费用。等受害人回头追究时,“点赞、集赞”的链接或者公众号全部消失。

套路二:

犯罪分子以“点赞”的名义诱导受害人下载含有木马病毒的APP软件或者点击链接,导致受害人手机中毒,盗取受害人手机通讯录,以实施诈骗,或或直接转走受害人的财产。

3. 个人信息保护小贴士

朋友圈的这些广告不能信!!!

  • 谨慎下载来源未知、以活动名义发送的链接或软件,小心被植入木马程序导致账号丢失。
  • 谨慎辨别正规微信公众平台和赞助商,警惕各类型点赞、投票等活动;
  • 填写个人信息要警惕,不要涉及银行卡号、账号等信息,尽量避免填写详尽的资料。

关键还是要记得天上不会掉馅饼,不贪小便宜,安心过日子。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
4天前
|
人工智能 安全 算法
AI与大数据:智慧城市安全的护航者与变革引擎
AI与大数据:智慧城市安全的护航者与变革引擎
38 1
|
4天前
|
人工智能 安全 数据挖掘
AI大数据分析对安全隐私的保护
AI大数据分析对安全隐私的保护非常重要。随着大数据技术和人工智能的发展,个人和企业的数据越来越容易被收集和分析。这种数据分析可以为企业提供有价值的洞察和决策支持,但同时也带来了安全隐私的风险。
|
4天前
|
安全 算法 大数据
漫谈大数据时代的个人信息安全(四)——“位所欲为”
漫谈大数据时代的个人信息安全(四)——“位所欲为”
|
4天前
|
机器学习/深度学习 人工智能 安全
漫谈大数据时代的个人信息安全(二)——“逢脸造戏”
漫谈大数据时代的个人信息安全(二)——“逢脸造戏”
|
4天前
|
安全 算法 大数据
漫谈大数据时代的个人信息安全(一)——“按图索骥”
漫谈大数据时代的个人信息安全(一)——“按图索骥”
|
4天前
|
人工智能 安全 数据库
AI大数据分析对个人安全隐私的保护非常重要
随着AI和大数据分析的迅速发展,个人安全隐私的保护变得越来越重要。
|
4天前
|
存储 人工智能 安全
AI大数据分析对企业安全隐私的保护非常重要
AI大数据分析在提供企业发展和决策支持的同时,也涉及到大量的企业数据和用户隐私信息。因此,保护企业安全隐私是非常重要的。
|
4天前
|
分布式计算 大数据 BI
MaxCompute产品使用合集之MaxCompute项目的数据是否可以被接入到阿里云的Quick BI中
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
4天前
|
SQL 分布式计算 大数据
MaxCompute产品使用合集之怎样可以将大数据计算MaxCompute表的数据可以导出为本地文件
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
4天前
|
分布式计算 DataWorks 数据库
DataWorks操作报错合集之DataWorks使用数据集成整库全增量同步oceanbase数据到odps的时候,遇到报错,该怎么处理
DataWorks是阿里云提供的一站式大数据开发与治理平台,支持数据集成、数据开发、数据服务、数据质量管理、数据安全管理等全流程数据处理。在使用DataWorks过程中,可能会遇到各种操作报错。以下是一些常见的报错情况及其可能的原因和解决方法。
25 0

热门文章

最新文章