深入理解GIL:如何写出高性能及线程安全的Python代码

简介:

6岁时,我有一个音乐盒。我上紧发条,音乐盒顶上的芭蕾舞女演员就会旋转起来,同时,内部装置发出“一闪一闪亮晶晶,满天都是小星星”的叮铃声。那玩意儿肯定俗气透了,但我喜欢那个音乐盒,我想知道它的工作原理是什么。后来我拆开了,才看到它里面一个简单的装置,机身内部镶嵌着一个拇指大小的金属圆筒,当它转动时会拨弄钢制的梳齿,从而发出这些音符。

在一个程序员具备的所有特性中,想探究事物运转规律的这种好奇心必不可少。当我打开音乐盒,观察内部装置,可以看出即使我没有成长为一个卓越的程序员,至少也是有好奇心的一个。

奇怪的是,我写 Python 程序多年,一直对全局解释器锁(GIL)持有错误的观念,因为我从未对它的运作机理产生足够好奇。我遇到其他对此同样犹豫和无知的人。是时候让我们来打开这个盒子一窥究竟了。让我们解读 CPython 解释器源码,找出 GIL 究竟是什么,为什么它存在于 Python 中,它又是怎么影响多线程程序的。我将通过举例帮助你深入理解 GIL 。你将会学到如何写出快速运行和线程安全的 Python 代码,以及如何在线程和进程中做选择。

(我在本文中只描述 CPython,而不是 Jython、PyPy 或 IronPython。因为目前绝大多数程序员还是使用 CPython 实现 Python 。)

瞧,全局解释器锁(GIL)

这里:


 
 
  1. static PyThread_type_lock interpreter_lock = 0; /* This is the GIL */ 

这一行代码摘自 ceval.c —— CPython 2.7 解释器的源代码,Guido van Rossum 的注释”This is the GIL“ 添加于2003 年,但这个锁本身可以追溯到1997年他的第一个多线程 Python 解释器。在 Unix系统中,PyThread_type_lock 是标准 C mutex_t 锁的别名。当 Python 解释器启动时它初始化:


 
 
  1. void 
  2.  
  3. PyEval_InitThreads(void) 
  4.  
  5.  
  6.     interpreter_lock = PyThread_allocate_lock(); 
  7.  
  8.     PyThread_acquire_lock(interpreter_lock); 
  9.  
  10. }  

解释器中的所有 C 代码在执行 Python 时必须保持这个锁。Guido 最初加这个锁是因为它使用起来简单。而且每次从 CPython 中去除 GIL 的尝试会耗费单线程程序太多性能,尽管去除 GIL 会带来多线程程序性能的提升,但仍是不值得的。(前者是Guido最为关切的, 也是不去除 GIL 最重要的原因, 一个简单的尝试是在1999年, 最终的结果是导致单线程的程序速度下降了几乎2倍.)

GIL 对程序中线程的影响足够简单,你可以在手背上写下这个原则:“一个线程运行 Python ,而其他 N 个睡眠或者等待 I/O.”(即保证同一时刻只有一个线程对共享资源进行存取) Python 线程也可以等待threading.Lock或者线程模块中的其他同步对象;线程处于这种状态也称之为”睡眠“。

线程何时切换?一个线程无论何时开始睡眠或等待网络 I/O,其他线程总有机会获取 GIL 执行 Python 代码。这是协同式多任务处理。CPython 也还有抢占式多任务处理。如果一个线程不间断地在 Python 2 中运行 1000 字节码指令,或者不间断地在 Python 3 运行15 毫秒,那么它便会放弃 GIL,而其他线程可以运行。把这想象成旧日有多个线程但只有一个 CPU 时的时间片。我将具体讨论这两种多任务处理。

把 Python 看作是旧时的大型主机,多个任务共用一个CPU。

协同式多任务处理

当一项任务比如网络 I/O启动,而在长的或不确定的时间,没有运行任何 Python 代码的需要,一个线程便会让出GIL,从而其他线程可以获取 GIL 而运行 Python。这种礼貌行为称为协同式多任务处理,它允许并发;多个线程同时等待不同事件。

也就是说两个线程各自分别连接一个套接字:


 
 
  1. def do_connect(): 
  2.  
  3.     s = socket.socket() 
  4.  
  5.     s.connect(('python.org', 80))  # drop the GIL 
  6.  
  7.   
  8.  
  9. for i in range(2): 
  10.  
  11.     t = threading.Thread(target=do_connect) 
  12.  
  13.     t.start()  

两个线程在同一时刻只能有一个执行 Python ,但一旦线程开始连接,它就会放弃 GIL ,这样其他线程就可以运行。这意味着两个线程可以并发等待套接字连接,这是一件好事。在同样的时间内它们可以做更多的工作。

让我们打开盒子,看看一个线程在连接建立时实际是如何放弃 GIL 的,在 socketmodule.c 中:


 
 
  1. /* s.connect((host, port)) method */ 
  2.  
  3. static PyObject * 
  4.  
  5. sock_connect(PySocketSockObject *s, PyObject *addro) 
  6.  
  7.  
  8.     sock_addr_t addrbuf; 
  9.  
  10.     int addrlen; 
  11.  
  12.     int res; 
  13.  
  14.   
  15.  
  16.     /* convert (host, port) tuple to C address */ 
  17.  
  18.     getsockaddrarg(s, addro, SAS2SA(&addrbuf), &addrlen); 
  19.  
  20.   
  21.  
  22.     Py_BEGIN_ALLOW_THREADS 
  23.  
  24.     res = connect(s->sock_fd, addr, addrlen); 
  25.  
  26.     Py_END_ALLOW_THREADS 
  27.  
  28.   
  29.  
  30.     /* error handling and so on .... */ 
  31.  
  32. }  

线程正是在Py_BEGIN_ALLOW_THREADS 宏处放弃 GIL;它被简单定义为:


 
 
  1. PyThread_release_lock(interpreter_lock); 

当然 Py_END_ALLOW_THREADS 重新获取锁。一个线程可能会在这个位置堵塞,等待另一个线程释放锁;一旦这种情况发生,等待的线程会抢夺回锁,并恢复执行你的Python代码。简而言之:当N个线程在网络 I/O 堵塞,或等待重新获取GIL,而一个线程运行Python。

下面来看一个使用协同式多任务处理快速抓取许多 URL 的完整例子。但在此之前,先对比下协同式多任务处理和其他形式的多任务处理。

抢占式多任务处理

Python线程可以主动释放 GIL,也可以先发制人抓取 GIL 。

让我们回顾下 Python 是如何运行的。你的程序分两个阶段运行。首先,Python文本被编译成一个名为字节码的简单二进制格式。第二,Python解释器的主回路,一个名叫 pyeval_evalframeex() 的函数,流畅地读取字节码,逐个执行其中的指令。

当解释器通过字节码时,它会定期放弃GIL,而不需要经过正在执行代码的线程允许,这样其他线程便能运行:


 
 
  1. for (;;) { 
  2.  
  3.     if (--ticker < 0) { 
  4.  
  5.         ticker = check_interval; 
  6.  
  7.   
  8.  
  9.         /* Give another thread a chance */ 
  10.  
  11.         PyThread_release_lock(interpreter_lock); 
  12.  
  13.   
  14.  
  15.         /* Other threads may run now */ 
  16.  
  17.   
  18.  
  19.         PyThread_acquire_lock(interpreter_lock, 1); 
  20.  
  21.     } 
  22.  
  23.   
  24.  
  25.     bytecode = *next_instr++; 
  26.  
  27.     switch (bytecode) { 
  28.  
  29.         /* execute the next instruction ... */ 
  30.  
  31.     } 
  32.  
  33. }  

默认情况下,检测间隔是1000 字节码。所有线程都运行相同的代码,并以相同的方式定期从他们的锁中抽出。在 Python 3 GIL 的实施更加复杂,检测间隔不是一个固定数目的字节码,而是15 毫秒。然而,对于你的代码,这些差异并不显著。

Python中的线程安全

将多个线状物编织在一起,需要技能。

如果一个线程可以随时失去 GIL,你必须使让代码线程安全。 然而 Python 程序员对线程安全的看法大不同于 C 或者 Java 程序员,因为许多 Python 操作是原子的。

在列表中调用 sort(),就是原子操作的例子。线程不能在排序期间被打断,其他线程从来看不到列表排序的部分,也不会在列表排序之前看到过期的数据。原子操作简化了我们的生活,但也有意外。例如,+ = 似乎比 sort() 函数简单,但+ =不是原子操作。你怎么知道哪些操作是原子的,哪些不是?

看看这个代码:


 
 
  1. n = 0 
  2.  
  3. def foo(): 
  4.  
  5.     global n 
  6.  
  7.     n += 1  

我们可以看到这个函数用 Python 的标准 dis 模块编译的字节码:


 
 
  1. >>> import dis 
  2.  
  3. >>> dis.dis(foo) 
  4.  
  5. LOAD_GLOBAL              0 (n) 
  6.  
  7. LOAD_CONST               1 (1) 
  8.  
  9. INPLACE_ADD 
  10.  
  11. STORE_GLOBAL             0 (n)  

代码的一行中, n += 1,被编译成 4 个字节码,进行 4 个基本操作:

  1. 将 n 值加载到堆栈上
  2. 将常数 1 加载到堆栈上
  3. 将堆栈顶部的两个值相加
  4. 将总和存储回 n

记住,一个线程每运行 1000 字节码,就会被解释器打断夺走 GIL 。如果运气不好,这(打断)可能发生在线程加载 n 值到堆栈期间,以及把它存储回 n 期间。很容易可以看到这个过程会如何导致更新丢失:


 
 
  1. threads = [] 
  2.  
  3. for i in range(100): 
  4.  
  5.     t = threading.Thread(target=foo) 
  6.  
  7.     threads.append(t) 
  8.  
  9. for t in threads: 
  10.  
  11.     t.start() 
  12.  
  13. for t in threads: 
  14.  
  15.     t.join() 
  16.  
  17. print(n)  

通常这个代码输出 100,因为 100 个线程每个都递增 n 。但有时你会看到 99 或 98 ,如果一个线程的更新被另一个覆盖。

所以,尽管有 GIL,你仍然需要加锁来保护共享的可变状态:


 
 
  1. n = 0 
  2.  
  3. lock = threading.Lock() 
  4.  
  5. def foo(): 
  6.  
  7.     global n 
  8.  
  9.     with lock: 
  10.  
  11.         n += 1  

如果我们使用一个原子操作比如 sort() 函数会如何呢?:


 
 
  1. lst = [4, 1, 3, 2] 
  2.  
  3. def foo(): 
  4.  
  5.     lst.sort()  

这个函数的字节码显示 sort() 函数不能被中断,因为它是原子的:


 
 
  1. >>> dis.dis(foo) 
  2.  
  3. LOAD_GLOBAL              0 (lst) 
  4.  
  5. LOAD_ATTR                1 (sort) 
  6.  
  7. CALL_FUNCTION            0  

一行被编译成 3 个字节码:

  1. 将 lst 值加载到堆栈上
  2. 将其排序方法加载到堆栈上
  3. 调用排序方法

即使这一行 lst.sort() 分几个步骤,调用 sort 自身是单个字节码,因此线程没有机会在调用期间抓取 GIL 。我们可以总结为在 sort() 不需要加锁。或者,为了避免担心哪个操作是原子的,遵循一个简单的原则:始终围绕共享可变状态的读取和写入加锁。毕竟,在 Python 中获取一个 threading.Lock 是廉价的。

尽管 GIL 不能免除我们加锁的需要,但它确实意味着没有加细粒度的锁的需要(所谓细粒度是指程序员需要自行加、解锁来保证线程安全,典型代表是 Java , 而 CPthon 中是粗粒度的锁,即语言层面本身维护着一个全局的锁机制,用来保证线程安全)。在线程自由的语言比如 Java,程序员努力在尽可能短的时间内加锁存取共享数据,减轻线程争夺,实现最大并行。然而因为在 Python 中线程无法并行运行,细粒度锁没有任何优势。只要没有线程保持这个锁,比如在睡眠,等待I/O, 或者一些其他失去 GIL 操作,你应该使用尽可能粗粒度的,简单的锁。其他线程无论如何无法并行运行。

并发可以完成更快

我敢打赌你真正为的是通过多线程来优化你的程序。通过同时等待许多网络操作,你的任务将更快完成,那么多线程会起到帮助,即使在同一时间只有一个线程可以执行 Python 。这就是并发,线程在这种情况下工作良好。

线程中代码运行更快


 
 
  1. import threading 
  2.  
  3. import requests 
  4.  
  5. urls = [...] 
  6.  
  7. def worker(): 
  8.  
  9.     while True
  10.  
  11.         try: 
  12.  
  13.             url = urls.pop() 
  14.  
  15.         except IndexError: 
  16.  
  17.             break  # Done. 
  18.  
  19.         requests.get(url) 
  20.  
  21. for _ in range(10): 
  22.  
  23.     t = threading.Thread(target=worker) 
  24.  
  25.     t.start()  

正如我们所看到的,在 HTTP上面获取一个URL中,这些线程在等待每个套接字操作时放弃 GIL,所以他们比一个线程更快完成工作。

Parallelism 并行

如果想只通过同时运行 Python 代码,而使任务完成更快怎么办?这种方式称为并行,这种情况 GIL 是禁止的。你必须使用多个进程,这种情况比线程更复杂,需要更多的内存,但它可以更好利用多个 CPU。

这个例子 fork 出 10 个进程,比只有 1 个进程要完成更快,因为进程在多核中并行运行。但是 10 个线程与 1 个线程相比,并不会完成更快,因为在一个时间点只有 1 个线程可以执行 Python:


 
 
  1. import os 
  2.  
  3. import sys 
  4.  
  5. nums =[1 for _ in range(1000000)] 
  6.  
  7. chunk_size = len(nums) // 10 
  8.  
  9. readers = [] 
  10.  
  11. while nums: 
  12.  
  13.     chunk, nums = nums[:chunk_size], nums[chunk_size:] 
  14.  
  15.     reader, writer = os.pipe() 
  16.  
  17.     if os.fork(): 
  18.  
  19.         readers.append(reader)  # Parent. 
  20.  
  21.     else
  22.  
  23.         subtotal = 0 
  24.  
  25.         for i in chunk: # Intentionally slow code. 
  26.  
  27.             subtotal += i 
  28.  
  29.         print('subtotal %d' % subtotal) 
  30.  
  31.         os.write(writer, str(subtotal).encode()) 
  32.  
  33.         sys.exit(0) 
  34.  
  35. # Parent. 
  36.  
  37. total = 0 
  38.  
  39. for reader in readers: 
  40.  
  41.     subtotal = int(os.read(reader, 1000).decode()) 
  42.  
  43.     total += subtotal 
  44.  
  45. print("Total: %d" % total)  

因为每个 fork 的进程有一个单独的 GIL,这个程序可以把工作分派出去,并一次运行多个计算。

(Jython 和 IronPython 提供单进程的并行,但它们远没有充分实现 CPython 的兼容性。有软件事务内存的 PyPy 有朝一日可以运行更快。如果你对此好奇,试试这些解释器。)

结语

既然你已经打开了音乐盒,看到了它简单的装置,你明白所有你需要知道的如何写出快速运行,线程安全的 Python 代码。使用线程进行并发 I/O 操作,在进程中进行并行计算。这个原则足够简单,你甚至不需要把它写在你的手上。


作者:伯乐专栏/郑芸

来源:51CTO

相关文章
|
21天前
|
运维 监控 算法
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
MSET-SPRT是一种结合多元状态估计技术(MSET)与序贯概率比检验(SPRT)的混合框架,专为高维度、强关联数据流的异常检测设计。MSET通过历史数据建模估计系统预期状态,SPRT基于统计推断判定偏差显著性,二者协同实现精准高效的异常识别。本文以Python为例,展示其在模拟数据中的应用,证明其在工业监控、设备健康管理及网络安全等领域的可靠性与有效性。
550 13
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
|
26天前
|
SQL 自然语言处理 数据库
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
|
3月前
|
并行计算 安全 Java
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
在Python开发中,GIL(全局解释器锁)一直备受关注。本文基于CPython解释器,探讨GIL的技术本质及其对程序性能的影响。GIL确保同一时刻只有一个线程执行代码,以保护内存管理的安全性,但也限制了多线程并行计算的效率。文章分析了GIL的必要性、局限性,并介绍了多进程、异步编程等替代方案。尽管Python 3.13计划移除GIL,但该特性至少要到2028年才会默认禁用,因此理解GIL仍至关重要。
263 16
Python GIL(全局解释器锁)机制对多线程性能影响的深度分析
|
2月前
|
Python
python3多线程中使用线程睡眠
本文详细介绍了Python3多线程编程中使用线程睡眠的基本方法和应用场景。通过 `time.sleep()`函数,可以使线程暂停执行一段指定的时间,从而控制线程的执行节奏。通过实际示例演示了如何在多线程中使用线程睡眠来实现计数器和下载器功能。希望本文能帮助您更好地理解和应用Python多线程编程,提高程序的并发能力和执行效率。
81 20
|
2月前
|
数据采集 供应链 API
实战指南:通过1688开放平台API获取商品详情数据(附Python代码及避坑指南)
1688作为国内最大的B2B供应链平台,其API为企业提供合法合规的JSON数据源,直接获取批发价、SKU库存等核心数据。相比爬虫方案,官方API避免了反爬严格、数据缺失和法律风险等问题。企业接入1688商品API需完成资质认证、创建应用、签名机制解析及调用接口四步。应用场景包括智能采购系统、供应商评估模型和跨境选品分析。提供高频问题解决方案及安全合规实践,确保数据安全与合法使用。立即访问1688开放平台,解锁B2B数据宝藏!
|
2月前
|
API 开发工具 Python
【Azure Developer】编写Python SDK代码实现从China Azure中VM Disk中创建磁盘快照Snapshot
本文介绍如何使用Python SDK为中国区微软云(China Azure)中的虚拟机磁盘创建快照。通过Azure Python SDK的Snapshot Class,指定`location`和`creation_data`参数,使用`Copy`选项从现有磁盘创建快照。代码示例展示了如何配置Default Azure Credential,并设置特定于中国区Azure的`base_url`和`credential_scopes`。参考资料包括官方文档和相关API说明。
|
3月前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
102 5
Python高性能编程:五种核心优化技术的原理与Python代码
|
2月前
|
数据采集 Java 数据处理
Python实用技巧:轻松驾驭多线程与多进程,加速任务执行
在Python编程中,多线程和多进程是提升程序效率的关键工具。多线程适用于I/O密集型任务,如文件读写、网络请求;多进程则适合CPU密集型任务,如科学计算、图像处理。本文详细介绍这两种并发编程方式的基本用法及应用场景,并通过实例代码展示如何使用threading、multiprocessing模块及线程池、进程池来优化程序性能。结合实际案例,帮助读者掌握并发编程技巧,提高程序执行速度和资源利用率。
68 0
|
4月前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
97 33
|
4月前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
69 10