深入理解GIL:如何写出高性能及线程安全的Python代码

简介:

6岁时,我有一个音乐盒。我上紧发条,音乐盒顶上的芭蕾舞女演员就会旋转起来,同时,内部装置发出“一闪一闪亮晶晶,满天都是小星星”的叮铃声。那玩意儿肯定俗气透了,但我喜欢那个音乐盒,我想知道它的工作原理是什么。后来我拆开了,才看到它里面一个简单的装置,机身内部镶嵌着一个拇指大小的金属圆筒,当它转动时会拨弄钢制的梳齿,从而发出这些音符。

在一个程序员具备的所有特性中,想探究事物运转规律的这种好奇心必不可少。当我打开音乐盒,观察内部装置,可以看出即使我没有成长为一个卓越的程序员,至少也是有好奇心的一个。

奇怪的是,我写 Python 程序多年,一直对全局解释器锁(GIL)持有错误的观念,因为我从未对它的运作机理产生足够好奇。我遇到其他对此同样犹豫和无知的人。是时候让我们来打开这个盒子一窥究竟了。让我们解读 CPython 解释器源码,找出 GIL 究竟是什么,为什么它存在于 Python 中,它又是怎么影响多线程程序的。我将通过举例帮助你深入理解 GIL 。你将会学到如何写出快速运行和线程安全的 Python 代码,以及如何在线程和进程中做选择。

(我在本文中只描述 CPython,而不是 Jython、PyPy 或 IronPython。因为目前绝大多数程序员还是使用 CPython 实现 Python 。)

瞧,全局解释器锁(GIL)

这里:


 
 
  1. static PyThread_type_lock interpreter_lock = 0; /* This is the GIL */ 

这一行代码摘自 ceval.c —— CPython 2.7 解释器的源代码,Guido van Rossum 的注释”This is the GIL“ 添加于2003 年,但这个锁本身可以追溯到1997年他的第一个多线程 Python 解释器。在 Unix系统中,PyThread_type_lock 是标准 C mutex_t 锁的别名。当 Python 解释器启动时它初始化:


 
 
  1. void 
  2.  
  3. PyEval_InitThreads(void) 
  4.  
  5.  
  6.     interpreter_lock = PyThread_allocate_lock(); 
  7.  
  8.     PyThread_acquire_lock(interpreter_lock); 
  9.  
  10. }  

解释器中的所有 C 代码在执行 Python 时必须保持这个锁。Guido 最初加这个锁是因为它使用起来简单。而且每次从 CPython 中去除 GIL 的尝试会耗费单线程程序太多性能,尽管去除 GIL 会带来多线程程序性能的提升,但仍是不值得的。(前者是Guido最为关切的, 也是不去除 GIL 最重要的原因, 一个简单的尝试是在1999年, 最终的结果是导致单线程的程序速度下降了几乎2倍.)

GIL 对程序中线程的影响足够简单,你可以在手背上写下这个原则:“一个线程运行 Python ,而其他 N 个睡眠或者等待 I/O.”(即保证同一时刻只有一个线程对共享资源进行存取) Python 线程也可以等待threading.Lock或者线程模块中的其他同步对象;线程处于这种状态也称之为”睡眠“。

线程何时切换?一个线程无论何时开始睡眠或等待网络 I/O,其他线程总有机会获取 GIL 执行 Python 代码。这是协同式多任务处理。CPython 也还有抢占式多任务处理。如果一个线程不间断地在 Python 2 中运行 1000 字节码指令,或者不间断地在 Python 3 运行15 毫秒,那么它便会放弃 GIL,而其他线程可以运行。把这想象成旧日有多个线程但只有一个 CPU 时的时间片。我将具体讨论这两种多任务处理。

把 Python 看作是旧时的大型主机,多个任务共用一个CPU。

协同式多任务处理

当一项任务比如网络 I/O启动,而在长的或不确定的时间,没有运行任何 Python 代码的需要,一个线程便会让出GIL,从而其他线程可以获取 GIL 而运行 Python。这种礼貌行为称为协同式多任务处理,它允许并发;多个线程同时等待不同事件。

也就是说两个线程各自分别连接一个套接字:


 
 
  1. def do_connect(): 
  2.  
  3.     s = socket.socket() 
  4.  
  5.     s.connect(('python.org', 80))  # drop the GIL 
  6.  
  7.   
  8.  
  9. for i in range(2): 
  10.  
  11.     t = threading.Thread(target=do_connect) 
  12.  
  13.     t.start()  

两个线程在同一时刻只能有一个执行 Python ,但一旦线程开始连接,它就会放弃 GIL ,这样其他线程就可以运行。这意味着两个线程可以并发等待套接字连接,这是一件好事。在同样的时间内它们可以做更多的工作。

让我们打开盒子,看看一个线程在连接建立时实际是如何放弃 GIL 的,在 socketmodule.c 中:


 
 
  1. /* s.connect((host, port)) method */ 
  2.  
  3. static PyObject * 
  4.  
  5. sock_connect(PySocketSockObject *s, PyObject *addro) 
  6.  
  7.  
  8.     sock_addr_t addrbuf; 
  9.  
  10.     int addrlen; 
  11.  
  12.     int res; 
  13.  
  14.   
  15.  
  16.     /* convert (host, port) tuple to C address */ 
  17.  
  18.     getsockaddrarg(s, addro, SAS2SA(&addrbuf), &addrlen); 
  19.  
  20.   
  21.  
  22.     Py_BEGIN_ALLOW_THREADS 
  23.  
  24.     res = connect(s->sock_fd, addr, addrlen); 
  25.  
  26.     Py_END_ALLOW_THREADS 
  27.  
  28.   
  29.  
  30.     /* error handling and so on .... */ 
  31.  
  32. }  

线程正是在Py_BEGIN_ALLOW_THREADS 宏处放弃 GIL;它被简单定义为:


 
 
  1. PyThread_release_lock(interpreter_lock); 

当然 Py_END_ALLOW_THREADS 重新获取锁。一个线程可能会在这个位置堵塞,等待另一个线程释放锁;一旦这种情况发生,等待的线程会抢夺回锁,并恢复执行你的Python代码。简而言之:当N个线程在网络 I/O 堵塞,或等待重新获取GIL,而一个线程运行Python。

下面来看一个使用协同式多任务处理快速抓取许多 URL 的完整例子。但在此之前,先对比下协同式多任务处理和其他形式的多任务处理。

抢占式多任务处理

Python线程可以主动释放 GIL,也可以先发制人抓取 GIL 。

让我们回顾下 Python 是如何运行的。你的程序分两个阶段运行。首先,Python文本被编译成一个名为字节码的简单二进制格式。第二,Python解释器的主回路,一个名叫 pyeval_evalframeex() 的函数,流畅地读取字节码,逐个执行其中的指令。

当解释器通过字节码时,它会定期放弃GIL,而不需要经过正在执行代码的线程允许,这样其他线程便能运行:


 
 
  1. for (;;) { 
  2.  
  3.     if (--ticker < 0) { 
  4.  
  5.         ticker = check_interval; 
  6.  
  7.   
  8.  
  9.         /* Give another thread a chance */ 
  10.  
  11.         PyThread_release_lock(interpreter_lock); 
  12.  
  13.   
  14.  
  15.         /* Other threads may run now */ 
  16.  
  17.   
  18.  
  19.         PyThread_acquire_lock(interpreter_lock, 1); 
  20.  
  21.     } 
  22.  
  23.   
  24.  
  25.     bytecode = *next_instr++; 
  26.  
  27.     switch (bytecode) { 
  28.  
  29.         /* execute the next instruction ... */ 
  30.  
  31.     } 
  32.  
  33. }  

默认情况下,检测间隔是1000 字节码。所有线程都运行相同的代码,并以相同的方式定期从他们的锁中抽出。在 Python 3 GIL 的实施更加复杂,检测间隔不是一个固定数目的字节码,而是15 毫秒。然而,对于你的代码,这些差异并不显著。

Python中的线程安全

将多个线状物编织在一起,需要技能。

如果一个线程可以随时失去 GIL,你必须使让代码线程安全。 然而 Python 程序员对线程安全的看法大不同于 C 或者 Java 程序员,因为许多 Python 操作是原子的。

在列表中调用 sort(),就是原子操作的例子。线程不能在排序期间被打断,其他线程从来看不到列表排序的部分,也不会在列表排序之前看到过期的数据。原子操作简化了我们的生活,但也有意外。例如,+ = 似乎比 sort() 函数简单,但+ =不是原子操作。你怎么知道哪些操作是原子的,哪些不是?

看看这个代码:


 
 
  1. n = 0 
  2.  
  3. def foo(): 
  4.  
  5.     global n 
  6.  
  7.     n += 1  

我们可以看到这个函数用 Python 的标准 dis 模块编译的字节码:


 
 
  1. >>> import dis 
  2.  
  3. >>> dis.dis(foo) 
  4.  
  5. LOAD_GLOBAL              0 (n) 
  6.  
  7. LOAD_CONST               1 (1) 
  8.  
  9. INPLACE_ADD 
  10.  
  11. STORE_GLOBAL             0 (n)  

代码的一行中, n += 1,被编译成 4 个字节码,进行 4 个基本操作:

  1. 将 n 值加载到堆栈上
  2. 将常数 1 加载到堆栈上
  3. 将堆栈顶部的两个值相加
  4. 将总和存储回 n

记住,一个线程每运行 1000 字节码,就会被解释器打断夺走 GIL 。如果运气不好,这(打断)可能发生在线程加载 n 值到堆栈期间,以及把它存储回 n 期间。很容易可以看到这个过程会如何导致更新丢失:


 
 
  1. threads = [] 
  2.  
  3. for i in range(100): 
  4.  
  5.     t = threading.Thread(target=foo) 
  6.  
  7.     threads.append(t) 
  8.  
  9. for t in threads: 
  10.  
  11.     t.start() 
  12.  
  13. for t in threads: 
  14.  
  15.     t.join() 
  16.  
  17. print(n)  

通常这个代码输出 100,因为 100 个线程每个都递增 n 。但有时你会看到 99 或 98 ,如果一个线程的更新被另一个覆盖。

所以,尽管有 GIL,你仍然需要加锁来保护共享的可变状态:


 
 
  1. n = 0 
  2.  
  3. lock = threading.Lock() 
  4.  
  5. def foo(): 
  6.  
  7.     global n 
  8.  
  9.     with lock: 
  10.  
  11.         n += 1  

如果我们使用一个原子操作比如 sort() 函数会如何呢?:


 
 
  1. lst = [4, 1, 3, 2] 
  2.  
  3. def foo(): 
  4.  
  5.     lst.sort()  

这个函数的字节码显示 sort() 函数不能被中断,因为它是原子的:


 
 
  1. >>> dis.dis(foo) 
  2.  
  3. LOAD_GLOBAL              0 (lst) 
  4.  
  5. LOAD_ATTR                1 (sort) 
  6.  
  7. CALL_FUNCTION            0  

一行被编译成 3 个字节码:

  1. 将 lst 值加载到堆栈上
  2. 将其排序方法加载到堆栈上
  3. 调用排序方法

即使这一行 lst.sort() 分几个步骤,调用 sort 自身是单个字节码,因此线程没有机会在调用期间抓取 GIL 。我们可以总结为在 sort() 不需要加锁。或者,为了避免担心哪个操作是原子的,遵循一个简单的原则:始终围绕共享可变状态的读取和写入加锁。毕竟,在 Python 中获取一个 threading.Lock 是廉价的。

尽管 GIL 不能免除我们加锁的需要,但它确实意味着没有加细粒度的锁的需要(所谓细粒度是指程序员需要自行加、解锁来保证线程安全,典型代表是 Java , 而 CPthon 中是粗粒度的锁,即语言层面本身维护着一个全局的锁机制,用来保证线程安全)。在线程自由的语言比如 Java,程序员努力在尽可能短的时间内加锁存取共享数据,减轻线程争夺,实现最大并行。然而因为在 Python 中线程无法并行运行,细粒度锁没有任何优势。只要没有线程保持这个锁,比如在睡眠,等待I/O, 或者一些其他失去 GIL 操作,你应该使用尽可能粗粒度的,简单的锁。其他线程无论如何无法并行运行。

并发可以完成更快

我敢打赌你真正为的是通过多线程来优化你的程序。通过同时等待许多网络操作,你的任务将更快完成,那么多线程会起到帮助,即使在同一时间只有一个线程可以执行 Python 。这就是并发,线程在这种情况下工作良好。

线程中代码运行更快


 
 
  1. import threading 
  2.  
  3. import requests 
  4.  
  5. urls = [...] 
  6.  
  7. def worker(): 
  8.  
  9.     while True
  10.  
  11.         try: 
  12.  
  13.             url = urls.pop() 
  14.  
  15.         except IndexError: 
  16.  
  17.             break  # Done. 
  18.  
  19.         requests.get(url) 
  20.  
  21. for _ in range(10): 
  22.  
  23.     t = threading.Thread(target=worker) 
  24.  
  25.     t.start()  

正如我们所看到的,在 HTTP上面获取一个URL中,这些线程在等待每个套接字操作时放弃 GIL,所以他们比一个线程更快完成工作。

Parallelism 并行

如果想只通过同时运行 Python 代码,而使任务完成更快怎么办?这种方式称为并行,这种情况 GIL 是禁止的。你必须使用多个进程,这种情况比线程更复杂,需要更多的内存,但它可以更好利用多个 CPU。

这个例子 fork 出 10 个进程,比只有 1 个进程要完成更快,因为进程在多核中并行运行。但是 10 个线程与 1 个线程相比,并不会完成更快,因为在一个时间点只有 1 个线程可以执行 Python:


 
 
  1. import os 
  2.  
  3. import sys 
  4.  
  5. nums =[1 for _ in range(1000000)] 
  6.  
  7. chunk_size = len(nums) // 10 
  8.  
  9. readers = [] 
  10.  
  11. while nums: 
  12.  
  13.     chunk, nums = nums[:chunk_size], nums[chunk_size:] 
  14.  
  15.     reader, writer = os.pipe() 
  16.  
  17.     if os.fork(): 
  18.  
  19.         readers.append(reader)  # Parent. 
  20.  
  21.     else
  22.  
  23.         subtotal = 0 
  24.  
  25.         for i in chunk: # Intentionally slow code. 
  26.  
  27.             subtotal += i 
  28.  
  29.         print('subtotal %d' % subtotal) 
  30.  
  31.         os.write(writer, str(subtotal).encode()) 
  32.  
  33.         sys.exit(0) 
  34.  
  35. # Parent. 
  36.  
  37. total = 0 
  38.  
  39. for reader in readers: 
  40.  
  41.     subtotal = int(os.read(reader, 1000).decode()) 
  42.  
  43.     total += subtotal 
  44.  
  45. print("Total: %d" % total)  

因为每个 fork 的进程有一个单独的 GIL,这个程序可以把工作分派出去,并一次运行多个计算。

(Jython 和 IronPython 提供单进程的并行,但它们远没有充分实现 CPython 的兼容性。有软件事务内存的 PyPy 有朝一日可以运行更快。如果你对此好奇,试试这些解释器。)

结语

既然你已经打开了音乐盒,看到了它简单的装置,你明白所有你需要知道的如何写出快速运行,线程安全的 Python 代码。使用线程进行并发 I/O 操作,在进程中进行并行计算。这个原则足够简单,你甚至不需要把它写在你的手上。


作者:伯乐专栏/郑芸

来源:51CTO

相关文章
|
8天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
11天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
10天前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
8天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
16 1
|
13天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
8天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
13天前
|
存储 算法 搜索推荐
Python高手必备!揭秘图(Graph)的N种风骚表示法,让你的代码瞬间高大上
在Python中,图作为重要的数据结构,广泛应用于社交网络分析、路径查找等领域。本文介绍四种图的表示方法:邻接矩阵、邻接表、边列表和邻接集。每种方法都有其特点和适用场景,掌握它们能提升代码效率和可读性,让你在项目中脱颖而出。
27 5
|
11天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
25 2
|
13天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
49 4
|
14天前
|
缓存 开发者 Python
探索Python中的装饰器:简化和增强你的代码
【10月更文挑战第32天】 在编程的世界中,简洁和效率是永恒的追求。Python提供了一种强大工具——装饰器,它允许我们以声明式的方式修改函数的行为。本文将深入探讨装饰器的概念、用法及其在实际应用中的优势。通过实际代码示例,我们不仅理解装饰器的工作方式,还能学会如何自定义装饰器来满足特定需求。无论你是初学者还是有经验的开发者,这篇文章都将为你揭示装饰器的神秘面纱,并展示如何利用它们简化和增强你的代码库。
下一篇
无影云桌面